The real-life Mind-Matrix…

Mail on LineThe real-life Matrix: MIT researchers reveal interface that can allow a computer to plug into the brain 

brain control

  • System could deliver optical signals and drugs directly into the brain
  • Could lead to devices for treatment of conditions such as Parkinson’s

It has been the holy grail of science fiction – an interface that allows us to plug our brain into a computer.

Now, researchers at MIT have revealed new fibres less than a width of a hair that could make it a reality.

They say their system that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs.

Christina Tringides, a senior at MIT and member of the research team, holds a sample of the multifunction fiber that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs.

Christina Tringides, a senior at MIT and member of the research team, holds a sample of the multifunction fiber that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs.

HOW IT WORKS

The new fibers are made of polymers that closely resemble the characteristics of neural tissues.

The multifunction fiber that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs.

Combining the different channels could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

‘We’re building neural interfaces that will interact with tissues in a more organic way than devices that have been used previously,’ said MIT’s Polina Anikeeva, an assistant professor of materials science and engineering.

The human brain’s complexity makes it extremely challenging to study not only because of its sheer size, but also because of the variety of signaling methods it uses simultaneously.

Conventional neural probes are designed to record a single type of signaling, limiting the information that can be derived from the brain at any point in time.

Now researchers at MIT may have found a way to change that.

By producing complex fibers that could be less than the width of a hair, they have created a system that could deliver optical signals and drugs directly into the brain, along with simultaneous electrical readout to continuously monitor the effects of the various inputs.

The newC technology is described in a paper in the journal Nature Biotechnology.

The new fibers are made of polymers that closely resemble the characteristics of neural tissues, Anikeeva says, allowing them to stay in the body much longer without harming the delicate tissues around them.

To do that, her team made use of novel fiber-fabrication technology pioneered by MIT professor of materials science Yoel Fink and his team, for use in photonics and other applications.

The result, Anikeeva explains, is the fabrication of polymer fibers ‘that are soft and flexible and look more like natural nerves.’

Devices currently used for neural recording and stimulation, she says, are made of metals, semiconductors, and glass, and can damage nearby tissues during ordinary movement.

‘It’s a big problem in neural prosthetics,’ Anikeeva says.

The result, Anikeeva explains, is the fabrication of polymer fibers 'that are soft and flexible and look more like natural nerves.'

HOW IT WORKS 

The new fibers are made of polymers that closely resemble the characteristics of neural tissues.

The multifunction fiber that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs. 

Combining the different channels could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

‘We’re building neural interfaces that will interact…

‘They are so stiff, so sharp — when you take a step and the brain moves with respect to the device, you end up scrambling the tissue.’

The key to the technology is making a larger-scale version, called a preform, of the desired arrangement of channels within the fiber: optical waveguides to carry light, hollow tubes to carry drugs, and conductive electrodes to carry electrical signals.

These polymer templates, which can have dimensions on the scale of inches, are then heated until they become soft, and drawn into a thin fiber, while retaining the exact arrangement of features within them.

A single draw of the fiber reduces the cross-section of the material 200-fold, and the process can be repeated, making the fibers thinner each time and approaching nanometer scale.

During this process, Anikeeva says, ‘Features that used to be inches across are now microns.’

Combining the different channels in a single fiber, she adds, could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

For example, light could be transmitted through the optical channels to enable optogenetic neural stimulation, the effects of which could then be monitored with embedded electrodes.

Combining the different channels in a single fiber, she adds, could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

Combining the different channels in a single fiber, she adds, could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

At the same time, one or more drugs could be injected into the brain through the hollow channels, while electrical signals in the neurons are recorded to determine, in real time, exactly what effect the drugs are having.

MIT researchers discuss their novel implantable device that can deliver optical signals and drugs to the brain, without harming the brain tissue.

The system can be tailored for a specific research or therapeutic application by creating the exact combination of channels needed for that task. ‘You can have a really broad palette of devices,’ Anikeeva says.

While a single preform a few inches long can produce hundreds of feet of fiber, the materials must be carefully selected so they all soften at the same temperature.

The fibers could ultimately be used for precision mapping of the responses of different regions of the brain or spinal cord, Anikeeva says, and ultimately may also lead to long-lasting devices for treatment of conditions such as Parkinson’s disease.

John Rogers, a professor of materials science and engineering and of chemistry at the University of Illinois at Urbana-Champaign who was not involved in this research, says, ‘These authors describe a fascinating, diverse collection of multifunctional fibers, tailored for insertion into the brain where they can stimulate and record neural behaviors through electrical, optical, and fluidic means.

The results significantly expand the toolkit of techniques that will be essential to our development of a basic understanding of brain function.’

Read more: http://www.dailymail.co.uk/sciencetech/article-2927410/The-real-life-Matrix-MIT-researchers-reveal-interface-allow-computer-plug-brain.html#ixzz3Q9lDVQv4

Neuro-Technology: Pentagon’s DARPA Continues To Push “Black Box” Brain Chip Implant

Neuro-Technology: Pentagon’s DARPA Continues To Push “Black Box” Brain Chip Implant

neurochip

Pentagon wants to “help” soldiers and seniors by implanting devices to trigger memories

The Defense Advanced Research Projects Agency (DARPA), the research arm of the military, is continuing to develop implantable brain chips, according to documents newly posted as part of the agency’s increased “transparency” policy.

The agency is seeking to develop a portable, wireless device that “must incorporate implantable probes” to record and stimulate brain activity – in effect, a memory triggering ‘black box’ device.

mind

The process would entail placing wires inside the brain, and under the scalp, with electrical impulses fired up through a transmitter placed under the skin of the chest area.

Bloomberg first picked up the story last week, and since then several tech blogs have jumped on board, describing the technological push as part of a project to help injured soldiers, and part an initiative set up by the Obama administration to find treatments for brain disorders, such as Alzheimer’s.

In reality, this project has been ongoing for years, decades in fact. And given that the Pentagon war machine is spear-heading it, with $70m of funding, one must seriously question why the DoD suddenly gives a damn about war wounded vets, never mind everyday Americans with brain disorders.

The documents state that rather than aid general memory loss, such a device would enable the ability to recover “task-based motor skills” like driving cars, operating machinery, tying shoe laces or even flying planes. It would also help recover memory loss surrounding traumatic events – according to the documents.

mind

Memory loss surrounding trauma occurs for a reason, so the individual can, at some point, slowly work back toward living a normal life. One has to wonder, from this description, whether DARPA’s brain implant, would merely facilitate “patching up”, soldiers, and sending them back out to duty, as if they were defective robots.

Indeed, that is the kind of transhumanism project that DARPA revels in. Just last year it was revealed that a DARPA team has constructed a machine that functions like a human brain and would enable robots to think independently and act autonomously.

There have also long been reports of DARPA seeking to develop technology that enables military masters to literally control the brains of soldiers and make them want to fight. A 2008 report for the US military detailed this initiative, along with possible weaponry including “Pharmacological landmines” that release chemicals to incapacitate enemy soldiers and torture techniques that involve delivering electronic pulses into the brains of terror suspects.

The report, titled “Emerging Cognitive Neuroscience and Related Technologies”, detailed byWired and the London Guardian, was commissioned by the Defense Intelligence Agency, the intelligence wing of the Department of Defense. It contains scientific research into the workings of the human mind and suggestions for the development of new war fighting technologies based upon the findings.

In a section focusing on mind control, the report states

If we can alter the brain, why not control it? […] One potential use involves making soldiers want to fight. Conversely, how can we disrupt the enemy’s motivation to fight? […] How can we make people trust us more? What if we could help the brain to remove fear or pain? Is there a way to make the enemy obey our commands?

It concludes that “drugs can be utilized to achieve abnormal, diseased, or disordered psychology” and also suggests that scanners able to read the intentions or memories of soldiers could be developed.

The report clearly does not rule out the use of such mind scanning technology on civilians as it suggests that “In situations where it is important to win the hearts and minds of the local populace, it would be useful to know if they understand the information being given them.”

control

It also suggests that the technology will one day have applications in counter-terrorism and crime-fighting and “might be good enough to help identify people at a checkpoint or counter who are afraid or anxious.”

The notion of “recording” brain activity is also something that DARPA has long sought to master. The concept may seem completely outlandish, yet it has been the central focus of DARPA activities for some time with projects such as LifeLog, which seeks to gain a multimedia, digital record of everywhere a person goes and everything they see, hear, read, say and touch.

Wired Magazine has reported:

On the surface, the project seems like the latest in a long line of DARPA’s “blue sky” research efforts, most of which never make it out of the lab. But DARPA is currently asking businesses and universities for research proposals to begin moving LifeLog forward.

“What national security experts and civil libertarians want to know is, why would the Defense Department want to do such a thing?” the article asks. The answer lies in the stated goal of the US military – “Total Spectrum Dominance”.

Furthermore, assertions that the neuro technology would not be in any way dominant over a person’s capacity to think, does not tally with DARPA’s Brain Machine Interfaces enterprise, a $24 million project reported on in the August 5, 2003 Boston Globe.

The project is developing technology that “promises to directly read thoughts from a living brain – and even instill thoughts as well… It does not take much imagination to see in this the makings of a matrix-like cyberpunk dystopia: chips that impose false memories, machines that scan for wayward thoughts, cognitively augmented government security forces that impose a ruthless order on a recalcitrant population.” The Globe reported.

Government funded advances in neurotechnology which also focus on developing the ability to essentially read people’s minds should also set alarm bells ringing.

It is also well documented that the military and the federal government have been dabbling in mind control and manipulation experimentation for decades.

Brain implants are a very scary proposition, however, and selling such a thing to veterans, and especially to the wider American populace, may be a harder task than selling them a pill to pop. Which is why some, including one former DARPA director and now a Google executive, have also been developing devices such as edible chips and e-tattoos.

Transhumanism is trendy!

Steve Watson is the London based writer and editor for Alex Jones’ Infowars.com, and Prisonplanet.com. He has a Masters Degree in International Relations from the School of Politics at The University of Nottingham, and a Bachelor Of Arts Degree in Literature and Creative Writing from Nottingham Trent University.

Articles by: Steve Watson

Related content:

We’ll be uploading our entire MINDS to computers by 2045

We’ll be uploading our entire MINDS to computers by 2045 and our bodies will  be replaced by machines within 90 years, Google expert claims

  • Ray Kurzweil,  director of engineering at Google,  believes we will be able to upload our entire brains to computers within the  next 32 years – an event known as singularity
  • Our ‘fragile’ human body parts will be  replaced by machines by the turn of the century
  • And if these predictions comes true, it  could make humans immortal

By  Victoria Woollaston

PUBLISHED: 14:22 GMT, 19  June 2013 |  UPDATED: 14:22 GMT, 19 June 2013

In just over 30 years, humans will be able to  upload their entire minds to computers and become digitally immortal – an event  called singularity – according to a futurist from Google.

Ray Kurzweil, director of engineering at  Google, also claims that the biological parts of our body will be replaced with  mechanical parts and this could happen as early as 2100.

Kurweil made the claims during his conference  speech at the Global Futures 2045 International Congress in New York at the  weekend.

Scroll down  for video

Ray Kurzweil - director of engineering at Google - claims that by 2045 humans will be able to upload their entire minds to computers and become digitally immortal - an event called singularityRay Kurzweil – director of engineering at Google –  claims that by 2045 humans will be able to upload their entire minds to  computers and become digitally immortal – an event called singularity. He made  the statement at the Global Futures 2045 International Congress in New York

WHAT IS  SINGULARITY?

Technological singularity is the development  of  ‘superintelligence’ brought about through the use of technology.

The first use of the term ‘singularity’ refer  to technological minds was by mathematician John von Neumann. Neumann in the  mid-1950s.

He said: ‘ever accelerating progress of  technology and changes in the mode of human life, which gives the appearance of  approaching some essential singularity in the history of the race beyond which  human affairs, as we know them, could not continue.’

The term was then used by science fiction  writer Vernor Vinge who believesbrain-computer interfaces are causes of the  singularity.

Ray Kurzweil cited von Neumann’s use of the  term in a foreword to von Neumann’s classic The Computer and the  Brain.

Kurzweil predicts the singularity to occur  around 2045 while Vinge predicts it will happen before  2030.

The conference was created by Russian  multimillionaire Dmitry Itskov and featured visonary talks about how the world  will look by 2045.

Kurzweil said: ‘Based on conservative  estimates of the amount of computation you need to functionally simulate a human  brain, we’ll be able to expand the scope  of our intelligence a  billion-fold.’

He referred to Moore’s Law that states the  power of computing doubles, on average, every two years quoting the developments  from genetic sequencing and 3D printing.

In Kurweil’s book, The Singularity Is Near,  he plots this development and journey towards singularity in a graph.

This singularity is also referred to as  digital immortality because brains and a person’s intelligence will be digitally  stored forever, even after they die.

He also added that this will be possible  through neural engineering and referenced the recent strides made towards  modeling the brain and technologies which can replace biological  functions.

Examples of such technology given  by LiveScience include the cochlear implant – an implant that is attached to the brain’s  cochlear nerve and electronically stimulates it to restore hearing to someone  who is deaf.

Other examples include technology that can  restore motor skills after the nervous system is damaged.

Also at the conference, Ray Kurzweil, pictured, said that 'frail, biological parts' of human bodies will be replaced with 'non-biological' parts in the future. Ray Kurzweil, pictured, said that ‘frail, biological parts’ of human bodies will be replaced with ‘non-biological’ parts in the future. He added that the non-biological part will become so powerful it can completely model and understand the biological part and make it redundant

Earlier this year, doctors from Cornell  University used 3D printing to create a prosthetic ear using cells of  cartilage.

A solid plastic mould was printed and then  filled with high-density collagen gel.The researchers then added cartilage cells  into the collagen matrix.

Kurweil was invited to the conference because  he has previously written books around the idea of singularity.

Expanding on this idea Martine Rothblatt, CEO  of biotech company United Therapeutics introduced the idea of  ‘mindclones’.

These are digital versions of humans  that  can live forever and can create ‘mindfiles’ that are a place to store aspects of  our personalities.

She said it would run on a kind of software  for consciousness and told The Huffington  Post: ‘The first company that  develops mindware will have  [as much success as] a thousand  Googles.’

Rothblatt added that the presence of mindware  could lead to replacing other parts of the body with ‘non-biological’ parts.

During Kurzweil's conference talk, and in his book The Singularity Is Near, he refers to Moore's Law of Computing, pictured.During Kurzweil’s conference talk, and in his book The  Singularity Is Near, he refers to Moore’s Law of Computing, pictured. The law  claims that the power of computing doubles, on average, every two years which  puts us on course for singularity by 2045

This is a concept that Kurweil also discussed  and was the basis of his book Fantastic Voyage.

In this book he discusses immortality and how  he believes the human body will develop.

He said: ‘We’re going to become increasingly  non-biological to the point where the non-biological part dominates and the  biological part is not important any more.

‘In fact the non-biological part – the  machine part – will be so powerful it can completely model and understand the  biological part. So even if that biological part went away it wouldn’t make any  difference.

DIGITAL AVATARS USED TO CURE  SCHIZOPHRENIA

An avatar system that can help schizophrenics  control the voices in their heads is being developed by British  researchers.

As part of the therapy, patients create an  avatar by choosing a face and a voice for the person, or persons, they believe  are inside their head.

Therapists can then encourage the patients to  oppose the avatar and force it away, which boosts their confidence in dealing  with their hallucinations.

The first stage in the therapy is for  the  patient to create a computer-based avatar, by choosing the face and  voice of  the entity they believe is talking to them.

The system then synchronises the  avatar’s  lips with its speech, enabling a therapist to speak to the  patient through the  avatar in real-time.

The therapist encourages the patient to  oppose the voice and gradually teaches them to take control of their  hallucinations.

The avatar doesn’t address the patients’  delusions directly but the study found the hallucinations improve as an  overall effect of the therapy.

This is because patients  can interact with the avatar as though it was a real person, because they  have  created it, but they know it cannot harm them.

comtermind

Many of the voices heard by schizophrenics  threaten to kill or harm them and their family.

‘We’ll also have non-biological bodies – we  can create bodies with nano technology, we can create virtual bodies and virtual  reality in which the virtual reality will be as realistic as the actual reality.

‘The virtual bodies will be as detailed and  convincing as real bodies.

‘We do need a body, our intelligence is  directed towards a body but it doesn’t have to be this frail, biological body  that is subject to all kinds of failure modes.

‘But I think we’ll have a choice of bodies,  we’ll certainly be routinely changing our parent body through virtual reality  and today you can have a different body in something like Second Life, but it’s  just a picture on the screen.

‘Research has shown that people actually  begin to subjectively identify with their avatar.

‘But in the future it’s not going to be a  little picture in a virtual environment you’re looking at. It will feel like  this is your body and you’re in that environment and your body is the virtual  body and it can be as realistic as real reality.

‘So we’ll be routinely able to change our  bodies very quickly as well as our environments. If we had radical life  extension only we would get profoundly bored and we would run out of thing to do  and new ideas.

‘In additional to radical life extension  we’re going to have radical life expansion.

‘We’re going to have million of virtual  environments to explore that we’re going to literally expand our brains – right  now we only have 300 million patterns organised in a grand hierarchy that we  create ourselves.

‘But we could make that 300 billion or 300  trillion. The last time we expanded it with the frontal cortex we created  language and art and science. Just think of the qualitative leaps we can’t even  imagine today when we expand our near cortex again.’

VIDEO: Ray Kurzweil – Immortality by 2045

Read more: http://www.dailymail.co.uk/sciencetech/article-2344398/Google-futurist-claims-uploading-entire-MINDS-computers-2045-bodies-replaced-machines-90-years.html#ixzz2gTpgDHuH Follow us: @MailOnline on Twitter | DailyMail on Facebook

Your Future Brain-Machine Implant: Ultrasonic Neural Dust

Your Future Brain-Machine Implant: Ultrasonic Neural  Dust

Imagine thousands of particle-sized CMOS chips living in  your brain.

158317681

Remember those slender gleaming spikes Keanu Reeves and pals jacked into the  backs of their noggins to go virtual-reality tripping in The Matrix?  That’s certainly an image: prong-to-brain networking, your neurons serviced by  skewer.

But then the movies — what can you do? The future of brain-machine  interfaces may be less, umm, visible if cutting-edge research by scientists at  the University of California Berkeley proves viable.

One of the biggest challenges for brain-machine interfaces (BMI) is how to  create one you could use indefinitely (like for a lifetime). Even in The  Matrix, connecting to the cloud seems awfully inconvenient: sit back in a  chair, stab yourself in the skull. Existing real-world BMI systems are clumsier  still. As KurzweilAI notes: “Current BMI systems are also limited to  several hundred implantable recording sites, they generate tissue responses  around the implanted electrodes that degrade recording performance over time,  and are limited to months to a few years.”

What if, instead, we built entire armies of tiny dust-sized sensor nodes that  could be implanted in the brain (though not autonomously — this isn’t  colonize-your-brain-stem time yet) to facilitate communication of whatever sort,  in this case keeping high-res tabs on neural signals and relaying data back to  aggregation devices via ultrasound?

neural-dust

Dongjin Seo, Jose M.  Carmena, Jan M. Rabaey, Elad Alon, Michel M. Maharbiz /  arXiv.org

Here’s how it might work: First you pop through the skull and the brain’s  dura (the membrane surrounding the brain), dipping into the brain’s neural sea  itself, roughly two millimeters down, where you position thousands of  low-powered CMOS chips (the “neural dust,” each as tiny as millionths of a  meter) to begin capturing neural signals using electrodes and piezoelectric  sensors, which convert the data to ultrasonic signals. Those signals are then  picked up by a sub-dural transceiver (sitting just above the “dust” chips and  simultaneously powering them ultrasonically), which relays the data to an  external transceiver resting just outside the skull (ASIC, memory, battery,  long-range transmitter), which in turn communicates wirelessly with whatever  computing device.

Like most futurist notions, this one hasn’t been tested yet — it’s just a formal proposal —  but it’s another fascinating glimpse into where we might be headed, bypassing  clumsy literal BMI head-jacks for micro-scale interfaces that  would link us, wire-free, to future galaxies of virtual information.

Read more: http://techland.time.com/2013/07/17/your-future-brain-machine-implant-ultrasonic-neural-dust/#ixzz2deJipOmj

Mind Control – Remote Neural Monitoring: Daniel Estulin and Magnus Olsson on Russia Today

Mind Control – Remote Neural Monitoring: Daniel Estulin and Magnus Olsson on Russia Today

This show, with the original title “Control mental. El sueño dorado de los dueños del mundo” (Mind control. The golden dream of the world’s masters) — broadcasted to some 45 million people — was one of the biggest victories for victims of implant technologies so far. Thanks to Magnus Olsson, who, despite being victimized himself, worked hard for several years to expose one the biggest human rights abuses of our times – connecting people against their will and knowledge to computers via implants of the size of a few nanometers – leading to a complete destruction of not only their lives and health, but also personalities and identities.

Very few people are aware of the actual link between neuroscience, cybernetics, artificial intelligence, neuro-chips, transhumanism, the science cyborg, robotics, somatic surveillance, behavior control, the thought police and human enhancement.

They all go hand in hand, and never in our history before, has this issue been as important as it is now.

One reason is that this technology, that begun to develop in the early 1950s is by now very advanced but the public is unaware of it and it goes completely unregulated. There is also a complete amnesia about its early development, as Lars Drudgaard of ICAACT, mentioned in one of his interviews last year. The CIA funded experiments on people without consent through leading universities and by hiring prominent neuroscientists of that time. These experiments have since the 50s been brutal, destroying every aspect of a person’s life, while hiding behind curtains of National Security and secrecy but also behind psychiatry diagnosis.

future of humanity

The second is that its backside –mind reading, thought police, surveillance, pre-crime, behavior modification, control of citizen’s behavior; tastes, dreams, feelings and wishes; identities; personalities and not to mention the ability to torture and kill anyone from a distance — is completely ignored. All the important ethical issues dealing with the most special aspects of being a free human being living a full human life are completely dismissed. The praise of the machine in these discourses dealing with not only transhumanism ideals but also neuroscience today has a cost and that is complete disrespect, despise and underestimation of human beings, at least when it comes to their bodies, abilities and biological functions. The brain is though seen as the only valuable thing; not just because of its complexity and mysteries, but also because it can create consciousness and awareness. We’re prone to diseases, we die, we make irrational decisions, we’re inconsistent, and we need someone to look up to. In a radio interview on Swedish “Filosofiska rummet” entitled “Me and my new brain” (Jag och min nya hjärna), neuroscientist Martin Ingvar referred to the human body as a “bad frame for the brain”.  Questions about individual free will and personal identity were discussed and the point of view of Martin Ingvar was very much in line with José Delgado’s some 60 years ago, and its buried history of mind control: we don’t really have any choice, we’re not really having a free will or for that matter any consistent personality. This would be enough reason to change humans to whatever someone else wishes. For example, an elite.

operator nsa

Another reason for why this issue dealing with brain implants is important of course is the fact that both the US and the EU pour billions of dollars and euros in brain research every single year, a brain research very focused on not only understanding the brain, but also highly focused on merging human beings with machines; using neuro-implants to correct behavior and enhance intelligence; creating robots and other machines that think and make autonomous intelligent decisions — just like humans do.

Ray Kurzweil, who’s predictions about future technological developments have been correct at least until now, claims that in 20 years, implant-technology has advanced that far that humanity has been completely transformed by it. We cannot know right now whether he’s prediction is right or wrong, but we have the right to decide on the kind of future we want. I do not know if eradicating humanity as we know it is the best future or the only alternative. Today, we might still have a choice.

Something to think about: Can you research the depths of the human brain on mice?

Copyright Carmen Lupan

Google’s chief engineer: People will soon upload their entire brains to computers

Google’s chief engineer: People will soon upload their entire brains to computers

 Published time: June 20, 2013 16:02

Ray Kurzweil (AFP Photo / Gabriel Bouys)
Ray Kurzweil (AFP Photo / Gabriel Bouys)    

There are around 377 million results on Google.com for the query “Can I live forever?” Ask that question to company’s top engineer, though, and you’re likely to hear an answer that’s much more concise.

  Simply put, Google’s Ray Kurzweil says immortality is only a few  years away. Digital immortality, at least.

minduploading

  Kurzweil, 64, was only brought on to Google late last year, but  that hasn’t stopped him from making headlines already. During a  conference in New York City last week, the company’s director of  engineering said that the growth of biotechnology is so quickly  paced that that he predicts our lives will be drastically  different in just a few decades.

  According to Kurzweil, humans will soon be able to upload their  entire brains onto computers. After then, other advancements  won’t be too far behind.

brain control

The life expectancy was 20, 1,000 years ago,” Kurzweil  said over the weekend at the Global Future 2045 World Congress in  New York City, CNBC’s Cadie Thompson reported. “We doubled it  in 200 years. This will go into high gear within 10 and 20 years  from now, probably less than 15, we will be reaching that tipping  point where we add more time than has gone by because of  scientific progress.”

Somewhere between 10 and 20 years, there is going to be  tremendous transformation of health and medicine,” he said.

  In his 2005 book “The Singularity Is Near,” Kurzweil predicted  that ongoing achievements in biotechnology would mean that by the  middle of the century, “humans will develop the means to  instantly create new portions of ourselves, either biological or  nonbiologicial,” so that people can have “a biological  body at one time and not at another, then have it again, then  change it.” He also said there will soon be   “software-based humans” who will “live out on the Web,  projecting bodies whenever they need or want them, including  holographically projected bodies, foglet-projected bodies and  physical bodies comprising nanobot swarms.”

  Those nanobot swarms might still be a bit away, but given the  vast capabilities already achieved since the publication of his  book, Kurzweil said in New York last week that more and more of  the human body will soon be synced up to computers, both for  backing up our thoughts and to help stay in good health.

  “There’s already fantastic therapies to overcome heart  disease, cancer and every other neurological disease based on  this idea of reprogramming the software,” Kurzweil at the  conference. “These are all examples of treating biology as  software. …These technologies will be a 1,000 times more  powerful than they were a decade ago. …These will be 1,000  times more powerful by the end of the decade. And a million times  more powerful in 20 years.”

  In “The Singularity Is Near,” Kurzweil acknowledged that Moore’s  Law of Computer suggests that the power of computer doubles, on  average, every two years. At that rate, he wrote, “We’re going  to become increasingly non-biological to the point where the  non-biological part dominates and the biological part is not  important anymore.”

  “Based on conservative estimates of the amount of computation  you need to functionally simulate a human brain, we’ll be able to  expand the scope of our intelligence a billion-fold,” The  Daily Mail quoted Kurzweil.

  Kurzweil joined Google in December 2012 and is a 1999 winner of  the National Medal of Technology and Innovation. In the 1970s,  Kurzweil was responsible for creating the first commercial  text-to-speech synthesizer.

Original:  http://rt.com/usa/google-kurzweil-singularity-brain-011/

To Build a Supercomputer Replica of a Human Brain

The $1.3B Quest to Build a Supercomputer Replica of a Human Brain

  • By Jonathon Keats
  • 05.14.13
  • See all  Pages: 1 2 3

Even by the standards of the TED conference, Henry Markram’s 2009 TEDGlobal talk was a mind-bender. He took the stage of the Oxford Playhouse, clad in the requisite dress shirt and blue jeans, and announced a plan that—if it panned out—would deliver a fully sentient hologram within a decade. He dedicated himself to wiping out all mental disorders and creating a self-aware artificial intelligence. And the South African–born neuroscientist pronounced that he would accomplish all this through an insanely ambitious attempt to build a complete model of a human brain—from synapses to hemispheres—and simulate it on a supercomputer. Markram was proposing a project that has bedeviled AI researchers for decades, that most had presumed was impossible. He wanted to build a working mind from the ground up.

In the four years since Markram’s speech, he hasn’t backed off a nanometer. The self-assured scientist claims that the only thing preventing scientists from understanding the human brain in its entirety—from the molecular level all the way to the mystery of consciousness—is a lack of ambition. If only neuroscience would follow his lead, he insists, his Human Brain Project could simulate the functions of all 86 billion neurons in the human brain, and the 100 trillion connections that link them. And once that’s done, once you’ve built a plug-and-play brain, anything is possible. You could take it apart to figure out the causes of brain diseases. You could rig it to robotics and develop a whole new range of intelligent technologies. You could strap on a pair of virtual reality glasses and experience a brain other than your own.

The way Markram sees it, technology has finally caught up with the dream of AI: Computers are finally growing sophisticated enough to tackle the massive data problem that is the human brain. But not everyone is so optimistic. “There are too many things we don’t yet know,” says Caltech professor Christof Koch, chief scientific officer at one of neuroscience’s biggest data producers, the Allen Institute for Brain Science in Seattle. “The roundworm has exactly 302 neurons, and we still have no frigging idea how this animal works.” Yet over the past couple of decades, Markram’s sheer persistence has garnered the respect of people like Nobel Prize–winning neuroscientist Torsten Wiesel and Sun Microsystems cofounder Andy Bechtolsheim. He has impressed leading figures in biology, neuroscience, and computing, who believe his initiative is important even if they consider some of his ultimate goals unrealistic.

Markram has earned that support on the strength of his work at the Swiss Federal Institute of Technology in Lausanne, where he and a group of 15 postdocs have been taking a first stab at realizing his grand vision—simulating the behavior of a million-neuron portion of the rat neocortex. They’ve broken new ground on everything from the expression of individual rat genes to the organizing principles of the animal’s brain. And the team has not only published some of that data in peer-reviewed journals but also integrated it into a cohesive model so it can be simulated on an IBM Blue Gene supercomputer.

The big question is whether these methods can scale. There’s no guarantee that Markram will be able to build out the rest of the rat brain, let alone the vastly more complex human brain. And if he can, nobody knows whether even the most faithful model will behave like a real brain—that if you build it, it will think. For all his bravado, Markram can’t answer that question. “But the only way you can find out is by building it,” he says, “and just building a brain is an incredible biological discovery process.” This is too big a job for just one lab, so Markram envisions an estimated 6,000 researchers around the world funneling data into his model. His role will be that of prophet, the sort of futurist who presents worthy goals too speculative for most scientists to countenance and then backs them up with a master plan that makes the nearly impossible appear perfectly plausible. Neuroscientists can spend a whole career on a single cell or molecule. Markram will grant them the opportunity and encouragement to band together and pursue the big questions.

And now Markram has funding almost as outsized as his ideas. On January 28, 2013, the European Commission—the governing body of the European Union—awarded him 1 billion euros ($1.3 billion). For decades, neuroscientists and computer scientists have debated whether a computer brain could ever be endowed with the intelligence of a human. It’s not a hypothetical debate anymore. Markram is building it. Will he replicate consciousness? The EU has bet $1.3 billion on it.

Ancient Egyptian surgeons believed that the brain was the “marrow of the skull” (in the graphic wording of a 3,500-year-old papyrus). About 1,500 years later, Aristotle decreed that the brain was a radiator to cool the heart’s “heat and seething.” While neuroscience has come a long way since then, the amount that we know about the brain is still minuscule compared to what we don’t know.

Over the past century, brain research has made tremendous strides, but it’s all atomized and highly specific—there’s still no unified theory that explains the whole. We know that the brain is electric, an intricately connected network, and that electrical signals are modulated by chemicals. In sufficient quantity, certain combinations of chemicals (called neurotransmitters) cause a neuron to fire an electrical signal down a long pathway called an axon. At the end of the axon is a synapse, a meeting point with another neuron. The electrical spike causes neurotransmitters to be released at the synapse, where they attach to receptors in the neighboring neuron, altering its voltage by opening or closing ion channels. At the simplest level, comparisons to a computer are helpful. The synapses are roughly equivalent to the logic gates in a circuit, and axons are the wires. The combination of inputs determines an output. Memories are stored by altering the wiring. Behavior is correlated with the pattern of firing.

Yet when scientists study these systems more closely, such reductionism looks nearly as rudimentary as the Egyptian notions about skull marrow. There are dozens of different neurotransmitters (dopamine and serotonin, to name two) plus as many neuroreceptors to receive them. There are more than 350 types of ion channel, the synaptic plumbing that determines whether a neuron will fire. At its most fine-grained, at the level of molecular biology, neuroscience attempts to describe and predict the effect of neurotransmitters one ion channel at a time. At the opposite end of the scale is functional magnetic resonance imaging, the favorite tool of behavioral neuroscience. Scans can roughly track which parts of the brain are active while watching a ball game or having an orgasm, albeit only by monitoring blood flow through the gray matter: the brain again viewed as a radiator.

Two large efforts—the Allen Brain Atlas and the National Institutes of Health-funded Human Connectome Project—are working at levels in between these two extremes, attempting to get closer to that unified theory that explains the whole. The Allen Brain Atlas is mapping the correlation between specific genes and specific structures and regions in both human and mouse brains. The Human Connectome Project is using noninvasive imaging techniques that show where wires are bundled and how those bundles are connected in human brains.

To add to the brain-mapping mix, President Obama in April announced the launch of an initiative called Brain (commonly referred to as the Brain Activity Map), which he hopes Congress will make possible with a $3 billion NIH budget. (To start, Obama is pledging $100 million of his 2014 budget.) Unlike the static Human Connectome Project, the proposed Brain Activity Map would show circuits firing in real time. At present this is feasible, writes Brain Activity Map participant Ralph Greenspan, “in the little fruit fly Drosophila.”

Even scaled up to human dimensions, such a map would chart only a web of activity, leaving out much of what is known of brain function at a molecular and functional level. For Markram, the American plan is just grist for his billion-euro mill. “The Brain Activity Map and other projects are focused on generating more data,” he writes. “The Human Brain Project is about data integration.” In other words, from his exalted perspective, the NIH and President Obama are just a bunch of postdocs ready to work for him.

Scientists See Promise in Deep-Learning Programs

Hao Zhang/The New York Times
 
 
 

A voice recognition program translated a speech given by Richard F. Rashid, Microsoft’s top scientist, into Mandarin Chinese.

Using an artificial intelligence technique inspired by theories about how the brain recognizes patterns, technology companies are reporting startling gains in fields as diverse as computer vision, speech recognition and the identification of promising new molecules for designing drugs.

A student team led by the computer scientist Geoffrey E. Hinton used deep-learning technology to design software.

The advances have led to widespread enthusiasm among researchers who design software to perform human activities like seeing, listening and thinking. They offer the promise of machines that converse with humans and perform tasks like driving cars and working in factories, raising the specter of automated robots that could replace human workers.

The technology, called deep learning, has already been put to use in services like Apple’s Siri virtual personal assistant, which is based on Nuance Communications’ speech recognition service, and in Google’s Street View, which uses machine vision to identify specific addresses.

But what is new in recent months is the growing speed and accuracy of deep-learning programs, often called artificial neural networks or just “neural nets” for their resemblance to the neural connections in the brain.

559348_10150932181771951_789331573_n

“There has been a number of stunning new results with deep-learning methods,” said Yann LeCun, a computer scientist at New York University who did pioneering research in handwriting recognition at Bell Laboratories. “The kind of jump we are seeing in the accuracy of these systems is very rare indeed.”

Artificial intelligence researchers are acutely aware of the dangers of being overly optimistic. Their field has long been plagued by outbursts of misplaced enthusiasm followed by equally striking declines.

In the 1960s, some computer scientists believed that a workable artificial intelligence system was just 10 years away. In the 1980s, a wave of commercial start-ups collapsed, leading to what some people called the “A.I. winter.”

But recent achievements have impressed a wide spectrum of computer experts. In October, for example, a team of graduate students studying with the University of Toronto computer scientist Geoffrey E. Hinton won the top prize in a contest sponsored by Merck to design software to help find molecules that might lead to new drugs.

imagesCA8AQ301

From a data set describing the chemical structure of thousands of different molecules, they used deep-learning software to determine which molecule was most likely to be an effective drug agent.

The achievement was particularly impressive because the team decided to enter the contest at the last minute and designed its software with no specific knowledge about how the molecules bind to their targets. The students were also working with a relatively small set of data; neural nets typically perform well only with very large ones.

“This is a really breathtaking result because it is the first time that deep learning won, and more significantly it won on a data set that it wouldn’t have been expected to win at,” said Anthony Goldbloom, chief executive and founder of Kaggle, a company that organizes data science competitions, including the Merck contest.

Advances in pattern recognition hold implications not just for drug development but for an array of applications, including marketing and law enforcement. With greater accuracy, for example, marketers can comb large databases of consumer behavior to get more precise information on buying habits. And improvements in facial recognition are likely to make surveillance technology cheaper and more commonplace.

Artificial neural networks, an idea going back to the 1950s, seek to mimic the way the brain absorbs information and learns from it. In recent decades, Dr. Hinton, 64 (a great-great-grandson of the 19th-century mathematician George Boole, whose work in logic is the foundation for modern digital computers), has pioneered powerful new techniques for helping the artificial networks recognize patterns.

Modern artificial neural networks are composed of an array of software components, divided into inputs, hidden layers and outputs. The arrays can be “trained” by repeated exposures to recognize patterns like images or sounds.

These techniques, aided by the growing speed and power of modern computers, have led to rapid improvements in speech recognition, drug discovery and computer vision.

Deep-learning systems have recently outperformed humans in certain limited recognition tests.

Last year, for example, a program created by scientists at the Swiss A. I. Lab at the University of Lugano won a pattern recognition contest by outperforming both competing software systems and a human expert in identifying images in a database of German traffic signs.

The winning program accurately identified 99.46 percent of the images in a set of 50,000; the top score in a group of 32 human participants was 99.22 percent, and the average for the humans was 98.84 percent.

Creating a computer with a human brain?

Are we on the brink of creating a computer with a human brain?

By Michael Hanlon

Brain
 
Professor Markram claims he plans to build an electronic human brain ‘within the next ten years’

There are only a handful of scientific revolutions that would really change the world. An immortality pill would be one. A time machine would be another.

Faster-than-light travel, allowing the stars to be explored in a human lifetime, would be on the shortlist, too.

To my mind, however, the creation of an artificial mind would probably trump all of these – a development that would throw up an array of bewildering and complex moral and philosophical quandaries. Amazingly, it might also be within reach.

For while time machines, eternal life potions and Star Trek-style warp drives are as far away as ever, a team of scientists in Switzerland is claiming that a fully-functioning replica of a human brain could be built by 2020.

This isn’t just pie-in-the-sky. The Blue Brain project, led by computer genius Henry Markram – who is also the director of the Centre for Neuroscience & Technology and the Brain Mind Institute – has for the past five years been engineering the mammalian brain, the most complex object known in the Universe, using some of the most powerful supercomputers in the world.

And last month, Professor Markram claimed, at a conference in Oxford, that he plans to build an electronic human brain ‘within ten years’.

If he is right, nothing will be the same again. But can such an extraordinary claim be credible? When we think of artificial minds, we inevitably think of the sort of machines that have starred in dozens of sci-fi movies.

Indeed, most scientists – and science fiction writers – have tended to concentrate on the nuts and bolts of robotics: how you make artificial muscles; how you make a machine see and hear; how you give it realistic skin and enough tendons and ligaments underneath that skin to allow it to smile convincingly.

But what tends to be glossed over is by far the most complex problem of all: how you make a machine think.

This problem is one of the central questions of modern philosophy and goes to the very heart of what we know, or rather do not know, about the human mind.

Most of us imagine that the brain is rather like a computer. And in many ways, it is. It processes data and can store quite prodigious amounts of information.

‘They are copying a brain without understanding it’

But in other ways, a brain is quite unlike a computer. For while our computers are brilliant at calculating the weather forecast and modelling the effects of nuclear explosions – tasks most often assigned to the most powerful machines – they still cannot ‘think’.

We cannot be sure this is the case. But no one thinks that the laptop on your desk or even the powerful mainframes used by the Met Office can, in any meaningful sense, have a mind.

So what is it, in that three pounds of grey jelly, that gives rise to the feeling of conscious self-awareness, the thoughts and emotions, the agonies and ecstasies that comprise being a human being?

This is a question that has troubled scientists and philosophers for centuries. The traditional answer was to assume that some sort of ‘soul’ pervades the brain, a mysterious ‘ghost in the machine’ which gives rise to the feeling of self and consciousness.

If this is the case, then computers, being machines not flesh and blood, will never think. We will never be able to build a robot that will feel pain or get angry, and the Blue Brain project will fail.

But very few scientists still subscribe to this traditional ‘dualist’ view – ‘dualist’ because it assumes ‘mind’ and ‘matter’ are two separate things.

Instead, most neuroscientists believe that our feelings of self-awareness, pain, love and so on are simply the result of the countless billions of electrical and chemical impulses that flit between its equally countless billions of neurons.

So if you build something that works exactly like a brain, consciousness, at least in theory, will follow.

In fact, several teams are working to prove this is the case by attempting to build an electronic brain. They are not attempting to build flesh and blood brains like modern-day Dr Frankensteins.

They are using powerful mainframe computers to ‘model’ a brain. But, they say, the result will be just the same.

Two years ago, a team at IBM’s Almaden research lab at Nevada University used a BlueGene/L Supercomputer to model half a mouse brain.

Half a mouse brain consists of about eight million neurons, each of which can form around 8,000 links with neighbouring cells.

Creating a virtual version of this pushes a computer to the limit, even machines which, like the BlueGene, can perform 20trillion calculations a second.

The ‘mouse’ simulation was run for about ten seconds at a speed a tenth as fast as an actual rodent brain operates. Nevertheless, the scientists said they detected tell-tale patterns believed to correspond with the ‘thoughts’ seen by scanners in real-life mouse brains.

It is just possible a fleeting, mousey, ‘consciousness’ emerged in the mind of this machine. But building a thinking, remembering human mind is more difficult. Many neuroscientists claim the human brain is too complicated to copy.

‘Turning it off might be seen as murder’

Markram’s team is undaunted. They are using one of the most powerful computers in the world to replicate the actions of the 100billion neurons in the human brain. It is this approach – essentially copying how a brain works without necessarily understanding all of its actions – that will lead to success, the team hopes. And if so, what then?

Well, a mind, however fleeting and however shorn of the inevitable complexities and nuances that come from being embedded in a body, is still a mind, a ‘person’. We would effectively have created a ‘brain in a vat’. Conscious, aware, capable of feeling, pain, desire. And probably terrified.

And if it were modelled on a human brain, we would then have real ethical dilemmas. If our ‘brain’ – effectively just a piece of extremely impressive computer software – could be said to know it exists, then do we assign it rights?

Would turning it off constitute murder? Would performing experiments upon it constitute torture?

And there are other questions, too, questions at the centre of the nurture versus nature debate. Would this human mind, for example, automatically feel guilt or would it need to be ‘taught’ a sense of morality first? And how would it respond to religion? Indeed, are these questions that a human mind asks of its own accord, or must it be taught to ask them first?

Thankfully, we are probably a long way from having to confront these issues. It is important to stress that not one scientist has provided anything like a convincing explanation for how the brain works, let alone shown for sure that it would be possible to replicate this in a machine.

Not one computer or robot has come near passing the famous ‘Turing Test’, devised by the brilliant Cambridge scientist Alan Turing in 1950, to prove whether a machine could think.

It is a simple test in which someone is asked to communicate, using a screen and keyboard, with a computer trying to mimic a human, and another, real human. If the judge cannot tell the machine from the other person, the computer has ‘passed’ the test. So far, every computer we have built has failed.

Yet, if the Blue Brain project succeeds, in a few decades – perhaps sooner – we will be looking at the creation of a new intelligent lifeform on Earth. And the ethical dilemmas we face when it comes to experimenting on animals in the name of science will pale into insignificance when faced with the potential torments of our new machine mind.

Read more: http://www.dailymail.co.uk/sciencetech/article-1205677/Are-brink-creating-human-brain.html#ixzz29l69zP3l

Transhumanism Will Merge Man With Machine

Neo-Humanity: Transhumanism Will Merge Man With Machine

August 10, 2012

Neo-Humanity: Transhumanism Will Merge Man With Machine

Susanne Posel, Contributor

Science and religion meet at the intersection of a $55 million grant gifted to UC Riverside in Pennsylvania by the John Templeton Foundation for further research into an afterlife and immortality.

John Martin Fischer, philosophy professor from UC Riverside, will host conferences and oversee post-doctoral students running a website that centers around immortality; along with international consensus where psychologists and neuroscientists from across the globe will convene.

The globalist Elite are obsessed with the merging man and machine, transhumanism and immortality. Basing advancements on scientific research, the 2045 Program will create “a new vision of human development that meets global challenges humanity faces today, realization of the possibility of a radical extension of human life by means of cybernetic technology, as well as the formation of a new culture associated with these technologies.”

 

Headed by Dimitry Itskov, the Avatar Project, an off-shoot of 2045, will house human brains in disembodied vehicles. They will initially be transplanted into robots, then humans by 2045 with the advancement of reverse-engineering; an effective “downloading” of human consciousness onto a computer chip.

DARPA is extremely interested in Avatar for the allocation of bi-pedal robots and essential super-soldiers and have devoted $7 million of its $2.8 billion 2012 budget to developing “interfaces and algorithms to enable a soldier to effectively partner with a semi-autonomous bi-pedal machine and allow it to act as the soldier’s surrogate.”

These human-controlled robots will be strong enough to “clear a room” and “facilitate sentry control and combat causality recovery.” Yet these “terminators” would easily be the most effective weapon against civil unrest or radical revolutionaries that did not subscribe to the globalist agenda.

 

The globalists at the 2045 Program assert that humanity “is in need of a new evolutionary strategy” consisting of a balance between the complexity of technological advances and the acceleration of informational processes to expand the “limited, primitive human” into a “highly self-organized” and technologically “higher intelligence”.

Technology can organize society and integrate unification of a super collective consciousness – a superbeing.

By doing away with individuality, the conclusion is the elimination of:

  • Lack of consumer provisions
  • Aging, illness and death
  • Crime and conflicts
  • Natural disasters and catastrophes

Superpeople are the epitome of communitarianism and collectivism as the new globalist vision of society marches toward immortal superpeople.

Because communitarianism is the ideology of the importance of community over the individual, the creation of a communalist society is the emphatic over-reaching value that if it does not provide for the whole, it is not worth pursuit.

The concept of the neo-human and neo-humanity is the replacement for a post-industrial capitalist and consumer-based society where a new form of civilization will emerge.

At the Global Future 2045 International Conference in 2013, scientists from all corners of the globe along with experts in nanotechnology, biotechnology, transbiology and other sciences will suggest a collaborative evolution of humanity into an transcendent era where the UN’s agenda of population transformation will be implemented.

A new model for society that adheres to the globalist ideologies of merging controllable humans with machines to facilitate a new race of human being that is led by artificial intelligence plunged into the global AI computer system and functions simply to be an autonomous workforce for the global Elite.

The goal of transhumanism is to replace all existing laws with the purpose of destroying the essence of humanity for the sake of control. Hybrid humans with robotic implants are expected to be released into the general public by 2014.

Humanity+, “an international nonprofit membership organization which advocates the ethical use of technology to expand human capacities”.

In their Transhumanist Declaration they advocate old and new ideals of globalist transhumanism by promoting:

  • Using technology to “broaden human potential” by overcoming aging and “cognitive shortcomings”
  • Provide forums where globalist scientist and researchers can “deliberate how [to enhance humanity through science] to expedite beneficial applications”
  • Facilitate “social order, improve human foresight and wisdom” through genetic enhancement
  • Influence policymakers to include the transhumanist “responsible and moral vision”

The Transhumanist Agenda uses eugenics, reproductive controls, sterilization campaigns, genetic engineering, RFID chips and rewiring of the brain through pharmaceuticals to achieve their goals. Their quest for immortality with the merging of human and machine is just one part in their convoluted scheme to retain their global dominance over our society.

For now, the general public is guinea pigs to be used to prefect their experiments so that by 2050, they will have full implemented their control grid and there will be no one to dissent.