WILL ARTIFICIAL INTELLIGENCE ENHANCE OR HACK HUMANITY? “Mind Hacking”: Information in the Cyber Age.

WILL ARTIFICIAL INTELLIGENCE ENHANCE OR HACK HUMANITY?

“Mind Hacking”: Information in the Cyber Age

 

Watch Yuval Noah Harari speak with Fei-Fei Li, renowned computer scientist and Co-Director of Stanford University’s Human-Centered AI Institute — in a conversation moderated by Nicholas Thompson, WIRED’s Editor-in-Chief. The discussion explores big themes and ideas, including ethics in technology, hacking humans, free will, and how to avoid potential dystopian scenarios. Publication is available under Creative Commons, CC BY-NC-ND 4.0 – https://creativecommons.org/licenses/…. The event was hosted at Stanford in April 2019, and was jointly sponsored by the university’s Humanities Center, McCoy Family Center for Ethics in Society, and the Stanford Institute for Human-Centered Artificial Intelligence (HAI).

The good old days of cold war disinformatia are gone. Social media are increasingly relevant in shaping the public opinion, but they are just “eco chambers”. Foreign actors with malicious intent can easily exploit this intrinsic feature of social media manipulating online information in order to influence the public opinion.  Moreover, cyberspace allows a large degree of anonymity, behind which it is easy to automate propaganda, and cyber attacks may be leveraged to exfiltrate and expose sensitive content or to gain information dominance during military operations, increasing the strategic relevance of the “information space”.  Operations in this domain are central in Russia’s security strategic thinking, featuring predominantly in its “New Generation War” military doctrine. But the ongoing militarization of cyberspace risks having dangerous spillovers in the conventional domain. What can we do in order to protect our open democracies while preserving a global, free will and resilient Internet? The answer is multi-faceted, in as much as CEIW (cyber-enabled information warfare) is an emerging asymmetric threat that forces us to innovate our security approach in many ways.

5G Will Use the Same Frequencies as Military Weapons do!!!

5G Will Use the Same Frequencies as Military Weapons do!!!

Znalezione obrazy dla zapytania weapons 5 g

What does the 5G network and a non-lethal weapon developed by the military have in common? The Department of Defense has developed a non-lethal crowd control device called the Active Denial System (ADS). The ADS works by firing a high-powered beam of 95 GHz waves at a target—that is, millimeter wavelengths.  Anyone caught in the beam will feel like their skin is burning. The burning sensation stops once the target leaves the beam. This weapon operates on 95GHz waves and 5G will operate on the same frequencies. 

Today’s cellular and Wi-Fi networks rely on microwaves – a type of electromagnetic radiation utilizing frequencies up to 6 gigahertz (GHz) in order to wirelessly transmit voice or data. However, 5G applications will require unlocking of new spectrum bands in higher frequency ranges above 6 GHz to 100 GHz and beyond, utilizing sub-millimeter and millimeter waves – to allow ultra-high rates of data to be transmitted in the same amount of time as compared with previous deployments of microwave radiation.

Have a look at the U.S. Navy’s most advanced laser weapon looks like a pricey amateur telescope.

Same with psychotronic weapons – totally invisible and work at the speed of light.

Now a US weapons that relies on the capability of this electromagnetic technology to induce unpleasant burning sensations on the skin as a form of crowd control is being rolled out.

Millimeter waves are utilized by the U.S. Army in crowd dispersal guns called Active Denial Systems. Dr. Paul Ben-Ishai pointed to research that was commissioned by the U.S. Army to find out why people ran away when the beam touched them. “If you are unlucky enough to be standing there when it hits you, you will feel like your body is on fire.” The U.S. Department of Defense explains how: “The sensation dissipates when the target moves out of the beam. The sensation is intense enough to cause a nearly instantaneous reflex action of the target to flee the beam.”

See the video below for the 5G frequency weapon in action: 

So, what we’re talking about with 5G technology is being exposed to the same kind of waves day in and day out, only at a lower power than the ADS. Have safety studies confirmed that such exposure is safe? No.

There’s more! Research from a team of Israeli physicists has found that there are new problems to consider with exposure to millimeter waves. When the wavelength of the energy approaches the dimensions of our biological structures, i.e. our skin and sweat ducts, previous assumptions about the safety of energy radiation are no longer valid. The research shows that, with millimeter waves, our sweat ducts actually act like little antennas, which means we would absorb more of this energy into our bodies. Other research has demonstrated that short-term exposure to low-intensity millimeter waves affects human cell membranes and could even result in the proliferation of multi-drug resistant bacteria.

Seeing as there has been virtually no research on long-term exposure to millimeter waves, the large-scale deployment of 5G technology is a massive experiment, and we’re the guinea pigs.

There’s no opting out of 5G—in fact it will become more ubiquitous than wireless technology is right now. As Verizon boasts on its website, the “Internet of Things” will thrive on 5G technology. The Internet of Things refers to the expanding number of devices, appliances, utilities, and other technologies that collect, transmit, and share data through the internet. Essentially, many processes that have not previously relied on the internet will start to once 5G roles out: switching lightbulbs on or off with a smartphone app, driverless cars—even “smart cities” that will use wireless networks to collect and analyze data about the environment, traffic, water, transit, lighting, waste management, security, and parking.

“The use of sub-terahertz (Millimeter wave) communications technology (cell phones, Wi-Fi, network transmission antennas) could cause humans to feel physical pain via nociceptors, ” stated Dr. Yael Stein, MD, who wrote a letter to the Federal Communications Commission about 5G Spectrum Frontiers.

Devra Lee Davis Founding Director of the Board on Environmental Studies and Toxicology of the U.S. National Research Council, National Academy of Sciences, Founding Director of the Center for Environmental Oncology, University of Pittsburgh Cancer Institute says

I love my devices as much as anyone else but I don’t want to the health of my grandchildren at risk. I don’t want to put them in harm’s way. We now know that the skin, our largest organ does respond to 5g, and in fact our sweat ducts they can act as antennas that can receive signals. 5G has not been tested for safety. The fact that it can interact with our sweat ducts may have much more profound meaning for our overall health and well-being. The idea that we’re going to saturate this country with a network that has never been tested is appalling. I am joining with many other scientists from around the world now to express concerns. We must evaluate these things before we roll out the technology  no matter how attractive it is for us to have faster downloads of video games, pornography or virtual reality. The question we have to ask ourselves is it worth endangering the health of our children?

Znalezione obrazy dla zapytania 5 g global lock down

Dr. Davis’ group – Environmental Health Trust – explains:

Israeli research studies presented at an international conference reveal that the same electromagnetic frequencies used for crowd control weapons form the foundation of the latest network – branded as 5G – that will tie together more than 50 billion devices as part of the Internet of Things. Current investigations of wireless frequencies in the millimeter and submillimeter range confirm that these waves interact directly with human skin, specifically the sweat glands. Dr. Ben-Ishai of the Department of Physics, Hebrew University, Israel recently detailed how human sweat ducts act like an array of helical antennas when exposed to these wavelengths. Scientists cautioned that before rolling out 5G technologies that use these frequencies, research on human health effects needed to be done first to ensure the public and environment are protected.

[Dr. Davis notes] “This work shows that the same parts of the human skin that allow us to sweat also respond to 5G radiation much like an antenna that can receive signals. We need the potential adverse health impacts of 5G to be seriously evaluated before we blanket our children, ourselves and the environment with this radiation.”

Research studies from the Dielectric Spectroscopy Laboratory of the Department of Applied Physics, Hebrew University of Jerusalem, headed by Dr. Yuri Feldman, indicate that millimeter and sub-millimeter waves may lead to preferential layer absorption. The number of sweat ducts within human skin varies from two million to four million. The researchers pointed to replicated peer research of these biological effects in laboratory research conducted in other countries and considered this mechanism of action well-proven.

There are now many thousands of peer-reviewed medical and epidemiological studies that show, illustrate or correlate, adverse biological effects with use of mobile phone technology or WIFI. Using frequencies even higher than 5 GHz (and up to 100 GHz) will compress the timeframe in which cancers and other biological effects show themselves within society. It is anyone’s guess on what might happen in terms of biological safety yet it is clear to see that the pulsed nature of these high frequency, high signal intensity signals do not harbor good news for humanity, particularly in relation to the functioning of our DNA.

Millimeter-wave-emitting devices will saturate our environment, and the fact that we’re plunging head-first into deploying this technology without knowing the health consequences is shocking.  

RESOURCES:

https://ehtrust.org/key-issues/cell-phoneswireless/5g-internet-everything/20-quick-facts-what-you-need-to-know-about-5g-wireless-and-small-cells/

https://www.sott.net/article/345599-5G-networks-will-use-the-same-frequencies-as-pain-inflicting-crowd-control-weapons

http://www.anh-usa.org/what-do-crowd-control-burning-skin-your-street-corner-and-superbugs-have-in-common/

Control Technology: No 1 ???

Control Technology: The Future Of Technology And Its Impact On Our Lives

Are your opinions really your own—or how much have they been carefully shaped until you think they are? Today’s digital connectivity makes it possible to share information like never before—traditional borders and constraints of distance simply do not exist anymore. But this same connectivity also makes it easier to manipulate the public’s perception of reality. The term “fake news” has become increasingly common in the past year—but it is only one facet of a much larger problem: the use of technology to alter public opinion, and ultimately affect the real world.

This is not a new phenomenon. At every point in human history where a new disruptive communications technology has replaced another, propaganda and manipulation flourish. Each communication method has its associated societal norms and customs, but these take time to form. What is allowed on television, radio, and print is well established—but the Internet has not reached that level of maturity yet.

“We need a program of psychosurgery for political control of our society. The purpose is physical control of the mind. Everyone who deviates from the given norm can be surgically mutilated.

“The individual may think that the most important reality is his own existence, but this is only his personal point of view. This lacks historical perspective. Man does not have the right to develop his own mind. This kind of liberal orientation has great appeal. We must electronically control the brain. Someday armies and generals will be controlled by electric stimulation of the brain.” Dr. José Delgado. Director of Neuropsychiatry, Yale University Medical School Congressional Record, No. 26, Vol. 118 February 24, 1974.


Military neuroscience — Manipulating brain frequencies and energy fields

Carolanne Wright – Psychotronics is the intersection between consciousness, energy fields and matter. In a bill introduced to the U.S. House of Representative in 2001, Dennis J. Kucinich describes psychotronic devices as “weapons” that can be used against individuals or specific populations to exert power over behavior and mood — essentially a form of mind control.

Russia has a long history of developing this class of technology, the most famous being the “Woodpecker” — a “Tesla-type transmitter” that emitted psychoactive signals in the 1970’s through the late eighties.

But Russia isn’t the only player in this dangerous game. GlobalResearch reports:

“Harnessing neuroscience to military capability, this technology is the result of decades of research and experimentation, most particularly in the Soviet Union and the United States. (Welsh, 1997, 2000) We have failed to comprehend that the result of the technology that originated in the years of the arms race between the Soviet Union and the West, has resulted in using satellite technology not only for surveillance and communication systems but also to lock on to human beings, manipulating brain frequencies by directing laser beams, neural-particle beams, electro-magnetic radiation, sonar waves, radio frequency radiation (RFR), soliton waves, torsion fields and by use of these or other energy fields which form the areas of study for astro-physics. Since the operations are characterized by secrecy, it seems inevitable that the methods that we do know about, that is, the exploitation of the ionosphere, our natural shield, are already outdated as we begin to grasp the implications of their use.”

In a 1998 German television documentary, Dr. Igor Smirnov, of the Institute of Psycho-Correction in Moscow, said that it’s easily conceivable that anyone who has the appropriate means and finances could inject himself into every computer network, radio or television broadcast with relative technological ease. “This is why such technology is rightfully feared.”

By now, a good number of people are familiar with the effects of electromagnetic pollution from cell phones, televisions, appliances, smart meters, computers and wi-fi. But could there be another more sinister reason why our health suffers when we’re exposed to these modern devices? Several U.S. patents suggest a disquieting answer.

Hidden mind control technology

According to United States Patent 6,506,148, filed in June of 2001:

“It is therefore possible to manipulate the nervous system of a subject by pulsing images displayed on a nearby computer monitor or TV set. For the latter, the image pulsing may be imbedded in the program material, or it may be overlaid by modulating a video stream, either as an RF signal or as a video signal.”

The invention can also be adapted to the source of video stream, whether a computer program, a television broadcast, video tape or DVD. Pulse variability can be influenced through the use of software in order to avoid habituation of the nervous system.

“Certain monitors can emit electromagnetic field pulses that excite a sensory resonance in a nearby subject, through image pulses that are so weak as to be subliminal. This is unfortunate since it opens a way for mischievous application of the invention, whereby people are exposed unknowingly to manipulation of their nervous systems for someone else’s purposes. Such application would be unethical and is of course not advocated. It is mentioned here in order to alert the public to the possibility of covert abuse that may occur while being online, or while watching TV, a video, or a DVD,” conclude the inventors.

Moreover, patents owned by Raytheon detail how to create “nuclear sized explosions without radiation” and describe electromagnetic pulse, power beam technology and over-the-horizon detection systems. One such patent (US 7629918 B2) describes the Multifunctional Radio Frequency Directed Energy System (RFDE):

“Radio frequency directed energy (RFDE) systems are known in the art for directing high power RF, microwave and/or millimeter wave electromagnetic energy to destroy or disrupt a target. Although RFDE systems typically serve as military weapons, RFDE systems need not be limited to weapon systems.

“An RFDE weapon system can go after a broad range of targets (electronics, biological, ordinance, structures, etc.) due to its relatively large radiated power. A priori knowledge of the intended target characteristics is typically not required because the RFDE weapon either burns-out or overwhelms its target by the shear amount of power it radiates.”

A disturbing possibility (among many) concerning this type of weaponry is the capability of using it to cause negative effects on human health and mental processes. And there is no escape or protection. Once a target is locked onto, it’s impossible to evade the electromagnetic energy by moving around.

Summaries of 85 additional patents relating to mental and emotional manipulation technologies can be found here.

As we contemplate the technological advancements — and ethical implications — relating to mind control, remember President John F. Kennedy’s warning in 1961:

“Today no war has been declared — and however fierce the struggle may be, it may never be declared in the traditional fashion. Our way of life is under attack… we are opposed, around the world, by a monolithic and ruthless conspiracy that relies primarily on covert means. … Whatever our hopes may be for the future — for reducing this threat or living with it — there is no escaping either the gravity or the totality of its challenge to our survival and to our security — a challenge that confronts us in unaccustomed ways in every sphere of human activity. … This is a time of peace and peril, which knows no precedent in history. It is the unprecedented nature of this challenge that also gives rise to… our obligation to inform and alert the American people — to make certain that they possess all the facts that they need, and understand them as well. … I have complete confidence in the response and dedication of our citizens,   whenever they are fully informed.”

Biotechnology and Human Augmentation

Mick Ryan and Therese Keane


Over the last decade, military theorists and authors in the fields of future warfare and strategy have examined in detail the potential impacts of an ongoing revolution in information technology. There has been a particular focus on the impacts of automation and artificial intelligence on military and national security affairs. This attention on silicon-based disruption has nonetheless meant that sufficient attention may not have been paid to other equally profound technological developments. One of those developments is the field of biotechnology.

There have been some breathtaking achievements in the biological realm over the last decade. Human genome sequencing has progressed from a multi-year and multi-billion dollar undertaking to a much cheaper and quicker process, far outstripping Moore’s Law. Just as those concerned with national security affairs must monitor disruptive silicon-based technologies, leaders must also be literate in the key biological issues likely to impact the future security of nations. One of the most significant matters in biotechnology is that of human augmentation and whether nations should augment military personnel to stay at the leading edge of capability.

Biotechnology and Human Augmentation

Military institutions will continue to seek competitive advantage over potential adversaries. While this is most obvious in the procurement of advanced platforms, human biotechnological advancement is gaining more attention. As a 2017 CSIS report on the Third Offset found most new technological advances will provide only a temporary advantage, assessed to be no more than five years. In this environment, some military institutions may view the newer field of human augmentation as a more significant source of a future competitive edge.

Biological enhancement of human performance has existed for millenia. The discovery of naturally occurring compounds by our ancestors has led to many of the cognitive and physical enhancements currently available. In the contemporary environment, for example, competition in national and international sports continues to fuel a race between creation of the next generation of performance enhancements and regulatory bodies developing detection methods. One example of this is the use of gene doping to hone the competitive edge in athletes, an off-label use of gene therapies originally developed for the treatment of debilitating genetic and acquired diseases. Despite the possibility of cancer and a range of other lethal side effects, some athletes consider these an acceptable risk. Might this not translate to adversaries adopting any possible advantage without equal disregard for ethics and safety considerations?

Gene Doping (Ralf Hiemisch)

It cannot be safely be assumed all states will share  the same ethical, moral, legal, or policy principals as Western democratic societies. Based on developmental trajectories to date, contemporary military institutions should anticipate that all forms of human enhancements, whether relatively benign or highly controversial, will continue to evolve. For contemporary strategic leaders, the key is to anticipate how these developments may potentially impact on military institutions.

Impacts on Military Institutions

Theoretically, future advances in biotechnology may permit the augmentation of cognitive performance. However, given the challenges of biocompatibility of silicon, significant enhancements to human performance in the near future are likely to be found in prosthetics, wearable computing, or human teaming with artificial intelligence. In the longer term, some forms of gene therapy may obviate the need for implants. Noting this, a selection of likely challenges are explored below.

Previously, integration of new groups into the military  dealt with human beings.

A first order issue will be group cohesion. Military institutions have deep experience integrating newcomers into their ranks. Fundamental to effective future teaming will be evolving this approach to establish trust and group cohesion between normal humans and those who are augmented. The degree to which military leaders can and should trust augmented personnel to make decisions about saving and taking lives is likely to be an evolutionary process. It also remains to be seen whether or not teams comprised of augmented and non-augmented humans are capable of developing trust. Experimentation and trials are needed to establish whether augmented people will bias away from decisions and input from non-augmented people and vice versa. While institutions can learn from historical integration challenges, there is one essential difference with augmented humans. Previously, integration of new groups into the military  dealt with human beings. If augmentation using neurotechnology significantly enhances cognitive function, this may represent a separate and distinct group of future Homo sapiens.

The second challenge will be accessibility. Military institutions will need to decide what proportion of its forces will be augmented. Given that early generations of this biotechnology may be expensive, it is unlikely an entire military institution can be augmented. If so, who will be augmented and why? Military institutions will need to develop a value proposition to ensure physical and cognitive augmentation produces superior outcomes to the use of un-augmented personnel. Yet another question to ask is whether military personnel will be de-augmented on leaving the service. The transition of augmented personnel into a largely unaugmented populace may be traumatic for military personnel, and for society more broadly. Even more severe in its repercussions may be transitioning de-augmented personnel into a populace where augmentation is ubiquitous.

The Role of Humans in the Age of Robots (The Luvo)

The third challenge will be conceptual. One Chinese scientist, writing in 2006, has proposed military biotechnology offers the chance to shift to a “new balance between defence and attack, giving rise to a new concept of warfare, a new balance of military force, and new attacking power.” While the emphasis of this particular article was on a more merciful form of warfare—about which we should be skeptical—it nonetheless highlights the requirement to rethink what biotechnology and human augmentation means for how military institutions develop warfighting concepts. When humans arrive with cognitive enhancement, a range of tactical, operational, and strategic concepts may become irrelevant. Strategic thinking, using a combination of biological and silicon-based technologies could take organisations in very different directions than is presently the case. It also bears examining whether those with augmentation will enable greater diversity of performance (particularly in the intellectual realm) or if it will lead to increased homogenisation of physical and cognitive performance.

The fourth challenge is obsolescence. A fundamental challenge for humans waging war is that, despite technological advances, one of the weakest links is the physical capacity of the human. As Patrick Lin was written, technology makes up for our absurd frailty. Therefore, might normal humans without augmentation become irrelevant in a new construct where military institutions possess large numbers of physically and cognitively augmented personnel? It remains to be seen whether unaugmented humans might able to compete with physically and cognitively augmented military personnel. The augmentation of humans for different physical and cognitive functions may also drive change in how military institutions operate, plan, and think strategically.

A fifth challenge is military education and training. Traditional military training emphases the teaching of humans to achieve learning outcomes and missions as individuals and teams. In an integrated augmented/non-augmented institution, training methods must evolve to account for the different and improved capabilities of augmented personnel and to blend the capabilities of augmented and non-augmented personnel. Similarly, education for military leaders currently seeks to achieve their intellectual development in the art and science of war. If humans augmented with cognitive enhancements are present, both institutional and individual professional military education will also need to evolve. Learning delivery, as well as key learning outcomes, will have to be re-examined to account for the enhanced physical and cognitive performance of this new segment of the military workforce. Even issues as basic as fitness assessments must be re-examined. Potentially, military organisations could drop physical assessments by automatically augmenting people to the institutionally desired level of performance.

The sixth challenge is one of choice. Command structures demand a reduction in an individual’s free will to refuse such that informed consent is not quite the same as for the general population. And when experimental augmentation options progress to become approved interventions, can we equate a parent considering whether to choose an approved cognitive augmentation option for their child to a soldier contemplating the same when operating alongside augmented peers where the stakes are orders of magnitude greater? How much choice will military personnel have in the augmentation process? Will this be on a volunteer basis or by direction, and what are the moral, legal, and ethical implications of these stances? Speculation that augmentation may become mandatory for some professions may also apply to the military.

The final issue addressed in this article is one of ethics. Research communities are grappling with the ethical and moral implications of augmentation for society as a whole. While the first concern in evaluating the military applications of biotechnology is international humanitarian law, bioethics must also be considered. Ethical considerations pervade almost every aspect of human augmentation, and there are ethical considerations threaded through the other challenges raised in this article. For example, beyond the first order questions of whether we should augment soldiers are issues such as how much augmentation should be allowable. Military institutions should also assess the cumulative effects of multiple augmentations and the consequences of converging augmentation. There may also be a point at which a highly augmented human may cross the human-machine barrier, as well as a range of unanticipated capabilities that emerge from different augmentation combinations.

A Way Ahead

These issues must be informed by those within the biotechnology community, but they alone cannot solve them. Broader involvement by senior military, government, and community leaders is required. One expert in biotechnology has written that “clearly the new forms of power being unleashed by bio-technology will have to be harnessed and used with greater wisdom than power has been used in the past.” If military institutions are to demonstrate wisdom in their investments in biotechnology, they must explore societal impacts as well as effects within military institutions.

“Splitting humankind into biological castes will destroy the foundations of liberal ideology. Liberalism still presupposes that all human beings have equal value and authority.”

It is likely some augmentation will be—at least initially—expensive.  It may be beyond the means of most people in society and, potentially, many government and corporate institutions. If only military personnel might be augmented, what are the impacts on civil-military relationships, and who would make this decision? In this construct, it could be unethical to deny the benefits of augmentation to wider society. However as Yuval Harari has noted, this may see a differentiation in how society views augmented and non-augmented people—“Splitting humankind into biological castes will destroy the foundations of liberal ideology. Liberalism still presupposes that all human beings have equal value and authority.” In Western democracies, this poses profound questions about conferred advantage, societal sense of fairness and equality, and the value of individuals within society.

In Western democratic systems, development of regulation, policy, and legal frameworks is not keeping pace with the current tempo of complicated technological advancements. It cannot be assumed other states are allowing these deficits to slow their efforts in biotechnology, not to mention the unregulated efforts of non-state actors. While the focus of the fourth industrial revolution remains predominantly on technologies, perhaps for Australia (and other democracies) it is also these areas which require a complementary revolution in the Whole of Nation enterprise so as to keep up with the pace of change and facilitate systematic assessment of human augmentation implications.

Conclusion

The potential to augment the physical and cognitive capacity of humans is seductive. There will be some who will not demonstrate responsible behaviour in taking advantage of these new technologies. Humans have demonstrated in the past the capacity to responsibly manage disruptive technologies such as flight, atomic weapons, and space-based capabilities. This means thoughtful academics, national security practitioners, and people from wider society must be part of the discussion on why and how biotechnology might be used in future. It is vital for the future of global security, and for the human race, that mechanisms for responsible ethical and legal use of biotechnology are considered and developed. This must occur in parallel with the scientific endeavours to develop new biotechnologies.


Mick Ryan is an Australian Army officer, and Commander of the Australian Defence College in Canberra, Australia. A distinguished graduate of Johns Hopkins University and the USMC Staff College and School of Advanced Warfare, he is a passionate advocate of professional education and lifelong learning. Therese Keane is a scientist with the Defence Science and Technology Group. Although with a background in mathematics now expanding into biotechnology. The views expressed are the authors’ and do not reflect the official position of the Australian Department of Defence or the Australian Government.

The psychoacoustic effect of infrasonic, sonic and ultrasonic frequencies within non-lethal military warfare techniques.

The psychoacoustic effect of infrasonic, sonic and ultrasonic frequencies within non-lethal military warfare techniques.

Exploring the use of audio to influence humans physically and psychologically as a means of non-lethal warfare methods throughout both the 20th and the 21st century.

Infrasonic Frequencies

The term ‘infrasound’ defines itself as the inaudible frequency range below the human bandwidth of around 20Hz. When discussing infrasound, it’s often associated with acts of

nature, sources such as the Fuego volcano in Guatemala emitted 120 decibels of infrasonic sound ranging around 10Hz (Georgia State University, no date). It is with occurrences like this that calls for a large amount of infrasonic monitoring to counter natural disaster detection. Beyond the use of infrasound detection, this frequency range, of which is inaudible to us, has been researched throughout the decades to investigate its effects on the human body. One of which is it’s application to military usage.

Throughout the 20th and 21st century, there has been a vast amount of research collected and interest gained in the use of non-lethal weapons (NLW), which are intended to immobilise or impair targets without causing permanent or severe damage to the human body. As technologies have developed, it’s apparent that military bodies within the world seek to create weapons resulting in “war’s without death” (Scott & Monitor, 2010). However, it is within the creation of new weapons that many issues arise, which perhaps may be a reason there is little evidence for the deployment of NLW. It’s apparent that some concepts of using infrasound may violate disarmament treaties, for example, the 1999 European Committee stated:

“global ban on all research and development, whether military or civilian, which seeks to apply knowledge of the chemical, electrical, sound vibration or other functioning of the human brain to the development of human beings, including a ban on actual or possible deployment of such systems” (Giordano, 2014).

Thus, this may result in military bodies taking a critical view before the acceptance of research to be made. However, it is important to understand at this point within this study, that this does not just encompass infrasonic sound but also applies to ultrasonic sound too.

Despite this, it is the alleged properties that infrasound, when applied correctly to humans, that have allowed for the field to be of interest within military application. Within Table 1 we can see a notable number of applications that infrasound could possibly or has been applied for:

Infrasound has resulted in a large amount of interest within the creation of NLW. It is apparent that given the technical depth that infrasound can be applied to within weaponry, a very in depth analysis of each device would be required. The present chapter within this text will analyse research collated that will allow for a greater insight into the application of infrasound on the human body, thus allowing us to formulate a background before exploring the outcome of the research tested within this study.

Physical and Psychological Effects

Infrasound has been utilised as a means of sonic warfare for physical human impact, dating back to World War 1. Acoustic imaging was the primitive use of infrasonic sound during World War 2, for the use of radar and sonar techniques in order to detect locations of enemy artillery (Ihde, 2015). Despite there bing many references to acoustic weaponry, as early as World War 2, it is in the 1960’s that actual documented research becomes more available. As described in, Secret Weapons of the Third Reich (E. Simon, 1971), one such device is discussed:

“…design consisted of a parabolic reflector, 3.2 meters in diameter, having a short tube which was the combustion chamber or sound generator, extending to the rear from the vertex of the parabola. The chamber was fed at the rear by two coaxial nozzles, the outer nozzle emitting methane, and the central nozzle oxygen. The length of the chamber was one- quarter the wavelength of the sound in air. Upon initiation, the first shock wave was reflected back from the openend of the chamber and initiated the second explosion. The frequency was from 800 to 1500 impulses per second. The main lobe of the sound intensity pattern had a 65 degree angle of opening, and at 60 meters’ distance on the axis a pressure of 1000 microbars had been measured. No physiological experiments were conducted, but it was estimated that at such a pressure it would take from 30 to 40 seconds to kill a man. At greater ranges, perhaps up to 300 meters, the effect, although not lethal, would be very painful and would probably disable a man for an appreciable length of time. Vision would be affected, and low- level exposures would cause point sources of light to appear as lines.”

This device, known as the ‘Wirbelwind Kanonew’ , is perhaps the only known fully developed infrasonic weapon created in order to physically effect it’s target, with the intention of countering enemy aircraft and infantry by creating a vortex of sound (Crab, 2008). Moreover, there are cases that perhaps suggest a possible application of infrasound to cause physical damage to the ear drum. (Harding, Bohne, Lee, & Salt, 2007) cites that frequency ranges around 4Hz, at high decibels, are perhaps able damage parts of the ear drum. The vibrational movement created by the infrasonic frequency result in large fluid movements of cochlear fluid, the intermixing of cochlear fluid is hypothesised to result in lasting damage. There are however, in contrary to this, studies also suggest the mechanisms of the ear have a normal reaction to infrasonic sound. As preciously mentioned, the central mechanism of the ear is the cochlear; within the cochlear there are two sensory cells, the inner hair cells (IHC) and the outer hair cells (OHC) (Cook, 1999). IHC responses are dependant on velocity and due to the fluid within the ear, the stimulus lowers as the frequency lowers; in contrast, OHC have a greater response to low frequency ranges such as infrasound. As a result, the effect of infrasound on IHC’s within the ear, could be suggested as inefficient thus resulting in infrasound’s effect on the ear, physically, being normal (Salt & Hullar, 2010). However, this does not suggest that the effect of infrasound on both IHC and OHC do not have a psychological effect on the brain. Exposure to levels above 80db between 0.5Hz and 10Hz causing these possible vibrational movements within the ear’s functions, are said to cause psychological changes such as fear, sorrow, depression, anxiety, nausea, chest pressure and hallucinations (ECRIP, 2008). It is the result of this effect in the middle ear, that (Goodman, 2010 p. 18) cites as being discovered by military personnel during World War 1 and World War 2.

The effect of emotional and psychological change as a result of infrasonic exposure can later be found during the second Indochina war. In 1973, The United States deployed the Urban Funk Campaign, a psychoacoustic attack during the war with the intention of altering mental states of their enemies (Goodman, 2010). The device utilised both infrasonic and ultrasonic frequencies, which emitted high decibel oscillations from a mounted helicopter onto the Vietnamese ground troops (Toffler, Alvin, & Toffler, 1995). Though there is no record of the specification of this device, one can assume that the U.S Military had tested the infrasonic frequency ranges in order to achieve a psychological effect on it’s targets. As previously cited by (Goodman, 2010), it is documented that the frequency range of 7Hz is thought to instil effects of uneasiness, anxiety, fear and anger. (Walonick, 1990) reports in a experiment that below 8Hz had caused agitation and uneasiness for participants. Goodman also supports this discussing “It has been noted that certain infrasonic frequencies plug straight into the algorithms of the brain and nervous system. Frequencies of 7 hertz, for example, coincide with theta rhythms, thought to induce moods of fear and anger.” (Goodman, 2010). It is within the psychological change that we begin to question the reasoning behind it, many of the studies in the next chapter of this study suggest that resonance is perhaps the reason as to why there could be an emotional and psychological change to human’s when exposed to infrasonic frequencies.

Resonance

All objects have a property known as their resonant frequency, this involves the “re- enforcement of vibrations of a receiving system due to a similarity to the frequencies of the source” (Pellegrino & Productions, 1996). It is this property that is held within all matter, that we can apply sound as a means of resonance within the human body. It is resonance within the human body that is thought to create the psychological effects of that mentioned in the previous chapter.

Limited literature within the infrasonic frequency range allows for an array of research speculating conspiracies within the utilisation of infrasonic frequency ranges as a means of non-lethal weaponry and crowd control. As a result, this could lead to a plausible suggestion that military application of non-lethal audio weapons have not been made publicly available. A large influence on the development and notable usages of infrasonic frequencies as a means of deterrence, was the development of a low-frequency acoustic device by French scientist Vladimir Gavreau (Lothes, 2004). It is reported that Gavreau had discovered the infrasound weapon by result of a resonant frequency being emitted from a motor-driven ventilator within his office (Vassilatos, no date). Following this, Gavreau developed a device that emitted infrasonic sine wave frequencies around 7hertz, with military application, (Vassilatos, no date) said to induce painful symptoms effecting his laboratory staff with immediate effect, other results are reported of the likes of the feeling of fear and flight. Following this discovery Gavreau made discussions that highlighted the effect of infrasonic frequencies to humans, citing it as a possible cause of city dwellers’ stress (Broner, 2003). Gavreau’s discovery within this field has been largely researched and discussed throughout the acoustic warfare field. Vinokur, drew from Gavreau’s invention stating within his publication The Case of the Mythical Beast. (Vinokur, 1993)

“. . . sound with a frequency of less than 16 Hz is inaudible. It’s called infrasound, and its effect on human beings is not completely understood. We do know, however, that high- intensity infrasound causes headache, fatigue, and anxiety . . . Our internal organs (heart, liver, stomach, kidneys) are attached to the bones by elastic connective tissue, and at low frequencies may be considered simple oscillators. The natural frequencies of most of them are below 12 Hz (which is in the infrasonic range). Thus, the organs may resonate. Of course, the amplitude of any resonance vibrations depends significantly on damping, which transforms mechanical energy into thermal energy . . . this amplitude decreases as the damping increases. Also, the amplitude is proportional to the amplitude of the harmonic force causing the vibrations . . .”

It is also apparent that such frequencies have been used in many varying fields to provide evidence of it’s existence, exterior to military and police usage. Furthermore, British physiology researchers O’Keeffe & Angliss conducted an experiment to test the effects of infrasonic frequencies on the human brain in 2003. The method was conducted by playing 4 musical pieces to 700 participants two of which had 17hertz frequencies played unknowingly to the participants during the piece. Results found that 22% of the participants experienced a feeling of anxiety and fear (Stathatos, no date). A similar experiment entitled ‘The Haunt Project’ conducted by the Anomalistic Psychology Research Unit of Goldsmiths College, London, subjected 79 volunteers to a varying array of infrasonic frequencies. The primary analysis of the study cites that “63 (79.7%) of the participants felt dizzy or odd, 9 (11.4%) experienced sadness, 7 (8.9%) experienced terror” (French, Haque, Bunton- Stasyshyn, & Davis, 2009). It’s not unreasonable to state that within a varying amount of research conducted in this field, there is little evidence to suggest why infrasound actually has an effect on human emotion. Acoustic scientists investigating the result of noise pollution on workers determine that every organ within the human body has a resonant frequency and it’s own ‘acoustic properties’, this effect is discussed as a possible means as to why frequency has an effect on the human body (Prashanth & Venugopalachar, 2010). Additionally to this, Mahindra states that the resonant frequency of the eyeball has a direct effect on emotional states of anxiety & stress (Prashanth & Venugopalachar, 2010). (Braithwaite, 2006), who also have researched infrasonic resonance, cite that the change to fearful emotions may be a direct response to infrasound inducing resonance within the human eyeball. To support this statement, it’s also apparent within research conducted by NASA (Aerospace Medical Research Laboratory, 1976) that the resonant frequency of the human eyeball sits at around 18hertz, just below the audible range of the human ear. Referring back to the use of 7Hz frequency, additional support is gathered with many texts referring to resonant frequencies within the body, with the likes of (Broner, 2003) stating “…it has also been alleged that this is the resonant frequency of the body’s organs…”. One could perhaps draw a conclusion that resonance could be the catalyst for psychological change when exposed to infrasonic sound. The result of resonant frequencies within the body allow for a direct correspondence to the frequency rhythms within the brain, which cohere with the emotional state of every human. (Davies & Honours, no date) cites that “Many of the most profound effects of sound are attributed to infrasound in the region of 7Hz. This corresponds with the median alpha-rhythm frequencies of the brain.”. In addition to this, we also see discussed by (Sargeant, 2001):

“The frequency that is thought to be most dangerous to humans is between 7 and 8Hz. This is the resonant frequency of flesh and, theoretically, it can rupture internal organs if loud enough. Seven hertz is also the average frequency of the brain’s alpha rhythms; thus this frequency has been described as dangerous but also relaxing. Whether exposure to such infrasound can trigger epileptic seizures, as some fear, remains unclear; experimental data on exposure to such frequencies gives a variety of results. It should be noted, however, that the strobe light effect associated with triggering epileptic seizures flashes at an equivalent rhythm. Frequencies below 50Hz commonly lose their coherence and are perceived to pulse or fluctuate, which is analogous to the strobing beat of a modulated light.”

It is apparent that the frequency range sitting around 7Hz has been widely discussed as changing a subject emotional state when exposed. As a result of this research, the study will gather primary research to understand the effect of 7Hz on the human body, and analyse the emotional effect it has within formulated within this study.

Sonic Frequencies

The frequency that forms our own perception of sound sits between 20Hz — 20,000Hz, though only constituting a small amount of frequency spectrum, our auditory range can play an important role on our body; such as our equilibrioception (balance), proprioception and kinaesthesia (joint motion and acceleration), time, nociception (pain), magnetoception (direction), and thermoception (temperature differences) (HEYS, 2011). In order to full understand how the military application of sound can impact subjects psychologically, we must first understand how sound effects us mentally. Drawing from research collated pioneers within the sound-emotion connection, (Berlyne, 1971), (Meyer & Meyer, 1961), (Juslin & Sloboda, 2001) & (Liljeström, 2011) suggest six main mechanisms that happen when we perceive sound:

  • Brain Stem Reflex is the effect of the brain recognising the acoustic properties of a sound, signalling the brain to react instinctively. Much similar to that of the American ‘Long Range Acoustic Device’ discussed later within this section.
  • Evaluative conditioning is the effect of association between setting and sound; if the brain has heard a specific sound repeatedly in a specific setting, this triggers an emotional connection between the two.
  • Emotional contagion is the perception of emotion expressed in certain sounds, whether or not the audio sounds sad, the association is recognised by the brain as an expression of emotion.
  • Visual imagery relates to the brains association between a certain sound and a visual image or sensation.
  • Episodic memory is the effect of the brain recognising sound as a memory, evoking the thought of stations to which a memory of sound was present.
  • Sound expectancy is the brains mechanism of expecting how a sound will hear through previous experience.
  • It is these mechanisms within the brain that aid us to draw the association between techniques developed for military application and sound in order to alter the state of mind of subjects. Whether it is by creating resonance within the brain or allowing for association between a sound and setting, many key pieces of research provide insight into the use of these techniques. It is with these mechanisms that we can gain an understanding as to why audible sound can effect our mental state.

Psychological Effects

The use of sound within our auditory range has been used to effect targets negatively from the mid-1900s. After analysing previously explored research within this field, a large amount of research refers to the United State’s military and their Psychological Operations Units (PsyOps) (United States Military, 1996). In many cases, we see the application of sound utilised in order to effect the six mechanisms discussed in chapter 3.2, allowing them to apply the use of sound for non-lethal warfare. As early as World War 2, we see strong evidence for the the deployment of sound, used in order to effect the psychology of enemies. The U.S militaries 23rd Special Troops, often referred to as the ‘Ghost Army’ were a troop of sound and radio engineers assigned to fabricate the sounds of marching troops, tanks, landing crafts allowing for sonic deception of their enemies (Goodman, 2009, p. 41). This perhaps was a result of that described in Philip Gerard’s book Secret Soldiers: How a Troupe of American Artists, Designers and Sonic Wizards Won World War II’s Battles of Deception Against the Germans:

“…screaming whine caused by a siren deliberately designed into the aircraft…it instilled a paralysing panic in those on the ground…For Division 17 of the National Research Defence Committee, the lesson was clear: sound could terrify soldiers…So they decided to take the concept to the next level and develop a sonic ‘bomb’…The idea of a sonic ‘bomb’ never quite panned out, so the engineers shifted their work toward battlefield deception.” (Gerard, 2002)

It is these tactics and technologies used within the early years of the military’s application of sound that allow for a greater insight into their usages. We also see many deployments of sonic frequencies, used in order to impact subjects negatively in varied military approaches such as interrogation, crowd control and creating fear against enemies. (BBC, 2003) cites the U.S’s PsyOps use of heavy metal and children’s music as a means of interrogation during warfare. Sergeant Mark Hadsell of PsyOps states “If you play it for 24 hours, your brain and body functions start to slide, your train of thought slows down and your will is broken. That’s when we come in and talk to them.” (BBC, 2003). However, though it is well documented that music and sound has been used within interrogation scenarios, this perhaps does not allow us to have an understanding of how sound effects our brain, as one can associate it’s effect as more physiological, due to sensory depravation caused, as a pose to psychological change. Psychological change, can infect be seen within the second Indochina war, similar to operations such as the Urban Funk Campaign discussed in section 3.1. Known as the “Wandering Soul” PsyOps units within the war attempted to exploit emotional contagion, evaluative conditioning and visual imagery of the enemy. John Pilger describes this within his book Heroes when discussing a PsyOps Officer in Vietnam:

“His favourite tape was called “Wandering Soul,” and as we lifted out of Snuffy he explained, “what we’re doing today is psyching out the enemy. And that’s where Wandering Soul comes in. Now you’ve got to understand the Vietnamese way of life to realise the power behind Wandering Soul. You see, the Vietnamese people worship their ancestors and they take a lot of notice of the spirits and stuff like that. Well, what we’re going to do here is broadcast the voices of the ancestors — you know, ghosts which we’ve simulated in our studios. These ghosts, these ancestors, are going to tell the Vietcong to stop messing with the people’s right to live freely, or the people are going to disown them.” The helicopter dropped to within twenty feet of the trees. The PsyOps captain threw a switch and a voice reverberated from two loudspeakers attached to the machine- gun mounting. While the voice hissed and hooted, a sergeant hurled out handfuls of leaflets which made the same threats in writing.” (Pilger, 1986).

These techniques have allowed for a greater amount of research in the 21st century, and as a common theme, this is particularly within the U.S military. In February 2004, the American Technology Corporation secured a $1 million contract to provide U.S forces in Iraq with Long Range Acoustic Devices (LRAD) (Goodman, 2009, p. 21). The LRAD focuses a directional 15° to 30° beam of sound between 1kHz and 5kHz reaching a distance of around 5,500 meters (LRAD , 2015). The use of the LRAD has been seen as a means of crowd control and has been identified in scenarios such as repelling pirates in Somalia and suicide bombers in the middle east (Goodman, 2009). It is the LRAD’s highly directional and high decibel sound that perhaps allows us to see the effect of the Brain Stem Reflex discussed in section 3.1. The impact of such a high decibel frequency could perhaps be believed to instil a natural instinctive flight mechanism in the brain; it is also document that the effect of the LRAD can cause nausea or dizziness, Amy Teibel writes, when discussing the Israeli use of a similar LRAD device

“A young Palestinian covers his ears from a sound, launched by a new weapon of the Israeli army, during a demonstration against the construction of Israel’s separation barrier at the West Bank village of Bil’in Friday, June 3, 2005. Israel is considering using an unusual new weapon against Jewish settlers who resist this summer’s Gaza Strip evacuation, a device that emits penetrating bursts of sound that send targets reeling with dizziness and nausea.” (Teibel, 2005).

However, when discussing the LRAD device we must also consider it’s use of ultrasound, as this device also applies ultrasound within it’s mechanism — this will be discussed in section 4.3.1. It is clear to see that the effect of sonic weapons used in order to impact the human body physiologically and alter the subjects mental state, is of large importance when researching acoustic warfare weapons.

Brainwave Entrainment

The effect of sound on our brain often leads back to a common theme of resonance. Brainwave entrainment (or often referred to as neural entrainment) defines itself as the use of certain frequencies to activate bands of electrical wave resonance within our brain, to induce neurological states within our body. The preliminary proof of concept and main body of contextual research in this field stems from German professor of Physics, Heinrich Wilhelm Dove, who made discoveries in brainwave entrainment (BWE) through infrasonic frequencies entitled “Binaural beats” in 1841 (Kliempt, Ruta, Ogston, Landeck, & Martay, 1999). This method of entrainment occurs when two coherent frequencies within our audible range, are made present in both the left and right ear. Each frequency enters the auditory canal of the ear through to the cochlea; in turn the basilar membrane resonates at the frequency heard, this passes to the brain allowing us to recognise the frequency (Cook, 1999). The effect of this allows the brain to detect the phase difference between the two frequencies, rather than the brain responding to each frequency, the effect comprises of the difference between the two. This instils the ‘third’ frequency to resonate at an infrasonic range below 20–30Hz. The stimulus frequency reverberated by this induces a specific cerebral wave corresponding to characterised states of mind. (Caterina Filimon, n.d). Goodman states “…resonating with alpha and theta rhythms in the brain known to produce moods of fear, anxiety or anger” (Goodman, 2009, p. 18).

This technique has been applied to many non-warfare scenarios, which allows us to understand the importance of it’s application. Many musicians and directors have found ways of utilising neural entrainment to initiate fear into the listeners. Movie Director Gaspar Noe and musician Thomas Bangalter, used two differing bandwidths to instil beta wave frequency to the audience in order to create a feeling of tension in particular scenes of the movie Irreversible (Stathatos, no date).

Articles posted in The Times & New Scientist in 1973 document the use of a device called a ‘Squawk Box’ (New Scientist, 1973), used by the British Military in Northern Ireland. The device, mounted on a vehicle, emitted two frequencies of marginal difference in order to resonate a particular frequency bandwidth, similar to the effect discussed previously (Spannered, 2009). The article in New Scientist reports that the audio produced psychoacoustic effects giddiness, nausea, fainting, or merely a “spooky” psychological effect to targets. It also goes on to say that “Most people are intensely annoyed by the device and have a compelling wish to be somewhere else.” (New Scientist, 1973). Though the exact frequency range that was created is discussed in many aspects of military application, it’s important to draw from research to discover which areas of brainwave entrainment may perhaps effect the human body negatively.

Contrary to that described previously, the use of binaural beats has been actively discussed as a means of stress relief for participants, with research such as that collated by (Huang & Charyton, 2008) citing “People suffering from cognitive functioning deficits, stress, pain, headache/migraines, PMS, and behavioural problems benefited from BWE. However, more controlled trials are needed to test additional protocols with outcomes.” It is in review of physiological effects of brainwave entrainment we see in many pieces of research and literature such as that by, (Wahbeh, Calabrese, & Zwickey, 2007) & (Huang & Charyton, 2008), that confirm increased Serotonin levels within the body due to brainwave entrainment. With research such as (Mercola, 2015), discussing the role of increased Serotonin levels positively effecting the feeling of anxiety, that perhaps one may see the benefits of BWE. However, it is in fact discussed by (L. Fannin, Ph.D, no date) that the effect of BWE on frequency ranges that are already heightened within our brain is what causes a negative effect. Jeffrey L. Fannin, Ph.D, discusses:

“Anxiety — Too much beta activity may cause you to feel afraid or have thoughts of fear towards things that you are usually calm. I would imagine that if your brainwaves get high enough in the beta range, you will begin to notice a fear of things that are not normal to freak out over.

Stress — Though there are many good things that come with beta waves, there is also a huge possibility that they may stress you out. They are linked to increased stress, which is why it is important to learn how to shift your brainwaves when needed.

Paranoia — Paranoid schizophrenics are actually able to generate much more high beta (25–30Hz) activity than the average population. Are beta brainwaves the cause of schizophrenia? No, they are a side-effect and schizophrenia is a much more complex disease. Increasing beta brainwaves will not increase the likelihood of you becoming crazy, but they could make you feel more paranoid than usual.”

Ultrasonic frequencies

The spectrum beyond human audible range defines itself as ultrasound, this being above 20,000Hz. Ultrasound maintains very directional wave forms, due to their smaller wavelength and is very easily absorbed by materials, which allows for a greater application of use than other frequency bandwidths (Carovac, Smajlovic, & Junuzovic, 2011). Due to this, we can see ultrasound utilised in largely in the medical industry, with a particular focus on digital diagnostic imaging. Diagnostic imaging of ultrasound scanners operate around 2 to 18 megahertz, being hundreds of times greater than human perception (Carovac, Smajlovic, & Junuzovic, 2011). The mechanisms for this process depends on the echo time or Doppler shift, of the reflected ultrasonic sound on the internal organs or soft tissue, thus resulting in a 2d or 3d image (Georgia State University, no date). Ultrasonic sound is often produced using either piezoelectric or magnetostrictive transistors, by applying the output of an electronic oscillation within the device (Georgia State University, no date). The preliminary applications of ultrasound can be seen as a means of radar detection, similar to that of infrasound discussed in section 3.1, with the employment of submarine detectors in World War 1 (Carovac, Smajlovic, & Junuzovic, 2011). This depended on similar technologies of that used today in the medical industry, however since then, we have seen research within ultrasonic frequencies rise in many differing fields. Though it is apparent that the use of ultrasound has not been as widely investigated as both the infrasonic and sonic frequency fields, we can still see a common interest in it’s application for military use.

 

Hypersonic Ultrasound

‘Hypersonic sound’ can be referred to simply as the focusing of ultrasound. Similar to that of light being focused into a laser, hypersonic sound works under a similar principle, with a speaker being focused into a highly directional focused beam of sound. The effect of this involves a speaker which emits low level ultrasound at around 100,000 vibrations per second, resulting in the audio creating the sound in the air as it travels, as a pose to regular speakers which make the sound waves on the face of the speaker (Norris, 2004). However, as previously mentioned in section 3.2.2, hypersonic sound used in devices like the LRAD do in fact utilise audible frequencies too and it is important to understand the cohesion within it’s application.

The military usage of hypersonic ultrasound is perhaps a technical advancement of the acoustic deception techniques used in World War II by the ‘Ghost Army’ and that of the Urban Funk Campaign in Vietnam both discussed in section 3.2.2. However, what these to techniques did not allow for was the development ultrasound, resulting in the audio being highly directional. Woody Norris, who would later found the LRAD Corporation, discussed the military application of ultrasound on a hypersonic sound lecture in 2004. Stating that the device had been deployed by the U.S military for use within Iraq, in order to deceive the enemy by creating the sound ‘fake’ troops. Moreover, he also discussed the use of the device that altered temperature of enemies whilst also stating:

“We make a version with this which puts out 155 decibels. Pain is 120. So it allows you to go nearly a mile away and communicate with people, and there can be a public beach just off to the side, and they don’t even know it’s turned on. We sell those to the military presently for about 70,000 dollars, and they’re buying them as fast as we can make them.” (Norris, 2004).

This in fact, gives us a great insight into the development of techniques used within prior wars and the advancement that has been made with technology of those discussed in previous sections. We can also see from this that the application of ultrasound has in fact been popular by the military and one could assume that there may be more progressed development within this field. Moreover, (Goodman, 2009) cites “There is, however, evidence to suggest that ultrasound has been considered by military and law enforcement authorities as a likely technology for so-called ‘non-lethal weapons’ for use in crowd control and ‘coercive interrogation’.” which is evident to this day. We can also see the application of hypersonic ultrasound as a means of public crowd control with the likes of The Mosquito Anti-Social Device (M.A.D), which emits high frequency sound, around 20,000hz and above, with a range of around 15 to 20 meters (Goodman, 2009). On the Compound Security System’s website, who are the company behind the M.A.D, they specify that the sine wave frequency played by the device, at 20kHz, can only be heard by those under 25 years of age (Compound Security, 2015). Thus, this system is targeted as a youth deterrent. The company goes on to state that field trials suggest that teenagers where acutely aware for the ultrasonic tone and would usually wish to move away after around ten minutes (Compound Security, 2015). This suggest that perhaps the device’s intended use is to create auditory discomfort for the target audience, in order for them to move away from a specific area. Moreover, devices similar to this have also been developed previously; though military and law enforcement have denied the use of ultrasonic devices it apparent that such exist. Instructions and a Patent for a ‘Phasor Pain Field Generator’ can be found, which emits ultrasonic frequencies at 20,000Hz to 25,000Hz as a schematic for a handheld self-defence device, specifying that it’s “intended for Law Enforcement, Personal Or For Qualified Acoustical Research” (Free Information Society, no date) & (De Laro Research, 2014). Within the description of this device, it also states “if at any time head or neck feels swollen or you feel light headed or sick to your stomach, it is an indication that you are being affected. Sometimes you may experience a continuous ringing in the ears even after the device is turned off” (Free Information Society, no date). One can draw a conclusion from the description of both the M.A.D and the ‘Phasor Pain Field Generator’ that the intended outcome if the the target to feel discomfort. It is not unreasonable to state that as technology has progressed within ultrasonic research and as more psychological effects of inaudible sounds are discovered, the perceptual military operations of sonic warfare have widened. These techniques of applying 20,000Hz as a means of deterrent of said ‘self-defence’ devices allow for more primary research within this field to be explored. As a result, this study will collect primary research within this area to allow for a greater insight into the application of these techniques.

Sources:


Aerospace Medical Research Laboratory. (1976). Mechanical resonant frequency of the human eye ‘in vivo’”. Retrieved from https://archive.org/stream/DTIC_ADA030476/ DTIC_ADA030476_djvu.txt

BBC. (2003) Sesame Street breaks Iraqi POWs. BBC Middle East, Retrieved from http:// news.bbc.co.uk/1/hi/world/middle_east/3042907.stm

Bahaistudies. (n.d.). Binaural Beats. Retrieved from http://www.bahaistudies.net/asma/ binaural.pdf

Berlyne, D. E. (1971). Aesthetics and psychobiology. New York: Meredith

Braithwaite, D. (2006). Good vibrations: The case for a specific effect of Infrasound in instances of anomalous experience has yet to be empirically demonstrated. Retrieved from http://www.academia.edu/1191555/ Good_Vibrations_The_Case_for_a_Specific_Effect_of_Infrasound_in_Instances_of_Anom alous_Experience_has_Yet_to_be_Empirically_Demonstrated

Broner, N. (2003). The effects of low frequency noise on people. Journal of Sound and Vibration. Retrieved from http://waubrafoundation.org.au/wp-content/uploads/2015/02/ Broner-The-effects-of-low-frequency-noise-on-people.pdf

Carovac, A., Smajlovic, F., & Junuzovic, D. (2011). Application of ultrasound in medicine. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564184/

Caterina Filimon, R. (n.d.). Beneficial Subliminal Music: Binaural Beats, Hemi-Sync and Metamusic. Department of Composition and Musicology University of Arts, University of Arts George Enescu, 1790–5095, 104–105

Compound Security. (2015). The mosquito MK4 anti-loitering device. Retrieved from http:// www.compoundsecurity.co.uk/security-equipment-mosquito-mk4-anti-loitering-device

Cook, P. R. (Ed.) (1999). Music, cognition, and computerized sound: an introduction to psychoacoustics (1st ed.). Cambridge, MA: The MIT Press

Crab, S. (2008). A short history of sound weapons: infrasound. Retrieved from https:// crab.wordpress.com/2008/01/14/a-short-history-of-sound-weapons-pt2-infrasound/

Davies, A. & Honours, B. (n.d.). Acoustic trauma: Bioeffects of sound. Retrieved from http://schizophonia.com/wp-content/uploads/2015/01/Alex_Davies_Acoustic_Trauma.pdf

De Laro Research. (2014). Ultrasonic Phaser Pain Field Generator. Retrieved from http:// delarosaresearch.com/uploads/ Ultrasonic_Phaser_Pain_Field_Generator_users_manual.pdf

ECRIP. (2008). Infrasound. Retrieved from http://www.eastcoastrip.org/did-you-know/ infrasound

E. Simon, L. (1971). Secret Weapons of the Third Reich: German Research in World War II

Fahy, F. & Walker, J. (Eds.) (2004). Advanced applications in acoustics, noise, and vibration (1st ed.). New York: Taylor & Francis

Free Information Society. (n.d.). Phasor Pain Field Generator. Retrieved from http:// www.freeinfosociety.com/electronics/schematics/weaponry/painfieldgenerator.pdf

French, C. C., Haque, U., Bunton-Stasyshyn, R., & Davis, R. (2009). The haunt’’ project: An attempt to build a haunted’’ room by manipulating complex electromagnetic fields and infrasound. Cortex. Retrieved from http://www.each.usp.br/rvicente/HauntProject.pdf

Georgia State University. (n.d.). Ultrasonic Sound. Retrieved from http://hyperphysics.phy- astr.gsu.edu/hbase/sound/usound.html

Georgia State University. (n.d.). Infrasonic Sound Retrieved from http://hyperphysics.phy- astr.gsu.edu/hbase/sound/infrasound.html

Gerard, P. (2002). Secret Soldiers: How a Troupe of American Artists, Designers and Sonic Wizards Won World War II’s Battles of Deception Against the Germans (1st ed.)

Giordano, J. (Ed.) (2014). Neurotechnology in national security and defense: Practical considerations, Neuroethical concerns. United Kingdom: CRC Press

Goodman, S. (2010). Sonic Warfare: Sound, Affect, and the Ecology of Fear. Cambridge, MA: MIT Press

HEYS, T. (2011). Sonic, Infrasonic, and Ultrasonic Frequencies: The utilisation of waveforms as weapons, apparatus for psychological manipulation, and as instruments of physiological influence by industrial, entertainment, and military Organisations.

Harding, G. W., Bohne, B. A., Lee, S. C., & Salt, A. N. (2007). Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise. Hearing Research. Retrieved from http://www.sciencedirect.com/science/article/pii/S0378595507000329

Howard, D. M. & Angus, J. A. S. (2009). Acoustics and Psychoacoustics (4th ed). Amsterdam: Elsevier Science

Huang, T. & Charyton, C. (2008). A comprehensive review of the psychological effects of brainwave entrainment. Alternative therapies in health and medicine. Retrieved from http:// www.ncbi.nlm.nih.gov/pubmed/18780583

Ihde, D. (2015). Acoustic Technics. United States: Lexington Books
Illingworth, E. (2012). Sonic Warfare and Music both Exploit the Negative Effects of

Sound. What are the Similarities — if any — between these two Distant Practices?

Juslin, P. & Sloboda, J. A. (Eds.) (2001). Music and emotion: Theory and research. New York: Oxford University Press

Kliempt, P., Ruta, D., Ogston, S., Landeck, A., & Martay, K. (1999). Hemispheric- synchronisation during anaesthesia: A double-blind randomised trial using audiotapes for intra-operative nociception control. Anaesthesia. Retrieved from http:// www.ncbi.nlm.nih.gov/pubmed/10460529

L. Fannin, Ph.D, J. (n.d.). Understanding Your Brainwaves. Retrieved from http:// drjoedispenza.com/files/understanding-brainwaves_white_paper.pdf

LRAD . (2015). Fact sheet — LRAD corporation. Retrieved from http://www.lradx.com/about/ lrad-public-safety-applications-fact-sheet/

Levitin, D. J. (2007). This Is Your Brain on Music: The Science of a Human Obsession. United States: New American Library

Liljeström, S. (2011). Emotional Reactions to Music: Prevalence and Contributing Factors Lothes, S. (2004). Acoustic noise. Retrieved from http://www.zemos98.org/controlsonoro/wp-content/uploads/pdf/acoustic_noise_Roman_Vinour.pdf

Mackinlay, C. (n.d.). Beta brain waves: 12 Hz to 40 Hz. Retrieved from http:// mentalhealthdaily.com/2014/04/10/beta-brain-waves-12-hz-to-40-hz/

Mercola. (2015) Social anxiety disorder linked to high serotonin levels. Retrieved from http://articles.mercola.com/sites/articles/archive/2015/07/02/social-anxiety-disorder.aspx

Meyer, L. B. & Meyer, D. J. (1961). Emotion and meaning in music. Chicago, IL: University of Chicago Press

New Scientist. (1973). New Scientist, September Issue. Reed Business Information Norris, W. (2004). Hypersonic Sound and other inventions (Lecture). Retrieved from https://www.ted.com/talks/woody_norris_invents_amazing_things?language=en

Pellegrino, R. & Productions, E. A. (1996). Sound deserves its own pollution category. Retrieved from http://www.ronpellegrinoselectronicartsproductions.org/Pages/ NsNSndPltnFndmntPrncpls.html/SndDsrvsOwnPltnCtgry.html

Pilger, J. (1986). Heroes. Random House.

Prashanth, M. & Venugopalachar, S. (2010). The possible influence of noise frequency components on the health of exposed industrial workers. Noise & health. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21173483

Salt, A. N. & Hullar, T. E. (2010). Responses of the ear to low frequency sounds, infrasound and wind turbines. Hearing Research. Retrieved from http:// www.sciencedirect.com/science/article/pii/S0378595510003126

Sargeant, J. (2001). Sonic Boom. Retrieved from http://www.zemos98.org/controlsonoro/ 2008/03/08/sonic-doom-by-jack-sargeant/

Scott, R. L. & Monitor, T. C. S. (2010) War without death? How non-lethal weapons could change warfare. Retrieved from http://www.csmonitor.com/Commentary/Opinion/ 2010/0311/War-without-death-How-non-lethal-weapons-could-change-warfare

Spannered. (2009). A brief history of sonic warfare. Retrieved from http:// www.spannered.org/features/806/

Stathatos, S. (n.d.). Sounds in Silence: Infrasound and Resonance
Teibel, A. (2005). Israel may use sound weapon on settlers. Retrieved from http://

www.freerepublic.com/focus/news/1420380/posts
Toffler, A., Alvin, & Toffler, H. (1995). War and anti-war: Making sense of today’s global

chaos. London: Time Warner Paperbacks
United States Military. (1996). Doctrine for Joint Psychological Operations. Retrieved from http://www.iwar.org.uk/psyops/resources/us/jp3_53.pdf

Vassiltos, G. (n.d.). ‘The Sonic Doom of Vladimir Gavreau’ by Gerry Vassilatos. Retrieved from https://borderlandsciences.org/journal/vol/52/n04/ Vassilatos_on_Vladimir_Gavreau.html

Vinokur, R. (1993). The Case of the Mythical Beast. USA: Quantum

Wahbeh, H., Calabrese, C., & Zwickey, H. (2007). Binaural beat technology in humans: A pilot study to assess Psychologic and physiologic effects. The Journal of Alternative and Complementary Medicine

Walonick, D. S. (1990). Journal of Borderland Research. Retrieved from https:// borderlandsciences.org/journal/vol/46/n03–4/ Walonick_Effects_6–10hz_ELF_on_Brain_Waves.html

(This article is part of the paper ‘The psychoacoustic effect of infrasonic, sonic and ultrasonic frequencies within non-lethal military warfare techniques’ by Ryan Littlefield, copywrite of The University of Portsmouth)

Remote Control of the Brain and Human Nervous System

Remote Control of the Brain and Human Nervous System

The USA and the European Union invest since the beginning of the millenium billions of dollars and euros into brain research. As a result of this research perfect maps of the brain were developed, including the areas of the brain that control the activity of different body organs or parts where higher brain activities, such as speech and thoughts, are taking place. The brain activities corresponding to different actions in those areas were also deciphered.

Thanks to the knowledge of specific locations of different centers in the brain and frequencies of the neuronal activity in them, teams of physicians are now capable of helping many people who were in the past, for different reasons, unable to participate in a normal life. There exist prostheses, which are controlled directly from the brain centers that normally control the movement of the limbs (see this) and enable people, who lost them, to use the prosthesis in a way similar to the way normal people use their limbs. Higher brain activities were produced as well. In 2006 scientists placed into the brain of a completely paralyzed man an implant, which transferred the activity of his brain into different devices and enabled him to open his e-mail, control his TV set and control his robotic arm. Other paralyzed people were able to search the Internet, play computer games and drive their electrical wheelchairs (see this).

Thanks to extensive brain research, computers were taught to understand the neuronal activity so much so that they are now capable of using the activity of our brain to reproduce our perceptions. Canadian scientists demonstrated an experiment, where the computer could interpret the electroencephalographical recordings from the brain to produce the painting of a face that the subject of experiment was perceiving (see this).

In the opposite way the data, processed by the computer in the way that will make them intelligible for the nervous system, can be transmitted into the brain and produce there a new reality. When an implant is placed in the brain and connected to a camera, placed on spectacles, for people whose photoreceptors in their retina stopped working, the sight is at least partially restored. In this case the camera on the spectacles is transmitting into the implant light frequencies and the implant re-transmits them in frequencies which “understand” the neurons processing the visual perceptions (see this).

In California scientists developed a device, which can register the brain waves and, using analysis, find among them consonants and vowels and in this way transform our thoughts to words. A paralyzed man could use this device to write without using a keyboard. Presently the accuracy of the device reaches 90%.  Scientists believe that within five years they will manage to develop a smartphone, to which their device could be connected (see this).

Just like in the case of visual perception it is possible, when knowing the algorithms of brain processing of words, to generate algorithms of different words in the computer and transmit them into the brain in ultrasound frequencies and in this way produce in the human brain particular “thoughts”.

Everybody will easily fall victim to the proposal that, instead of typing or searching with the use of mouse, his computer or cell phone could react directly to his brain’s activity and take down his thoughts directly to the documents or carry out operations that has just occurred to him.

As a matter of fact Apple and Samsung companies have already developed prototypes of necessary electroencephalographical equipment, which can be placed on top of a head and transmit electromagnetic waves produced by the brain into the prototypes of new smart phones. The smart phones should analyze those waves, find out what are the intentions of their owners and carry them out. Apple and Samsung companies expect that the direct connection with brains will gradually replace computer keyboards, touch screens, mouse and voice orders (see this). When the system is complete, it will be feasible for hackers, government agencies and foreign government’s agencies to implant thoughts and emotions in people’s minds and “hearts“, when they will be connected to internet or cell phone systems.

In 2013 scientists in the USA could infer from the brain activity the political views of people and distinguish democrats from republicans and in 2016 scientists used transcranial magnetic stimulation to make subjects of experiment more positive towards criticism to their country, than the participants whose brains were unaffected (see this).

Last year historian Juval Noah Harari was invited to deliver a speech at the World economic Forum in Davos. The editor of the British daily Financial Times stressed, when introducing him, that it is not usual to invite a historian to speak to most important world economists and politicians. Juval Noah Harari warned in his speech against the rise of new totality, based on the access to human brain. He said:

“Once we have algorithms that can understand you better than you understand yourself, they could predict my desires, manipulate my feelings and even make decisions on my behalf. And if we are not careful the outcome can be the rise of digital dictatorships. In the 21st century we may be enslaved under digital dictatorships”

In a similar way the Stanford University researcher in neurology and Dolby Labs’ chief scientist Poppy Crum warned at the conference in Las Vegas:

“Your devices will know more about you than you will. I believe we need to think about how [this data] could be used“.

In April 2017 neuroethicist at the University of Basel Marcello Ienca and Roberto Andorno, a human rights lawyer at the University of Zurich, writing in the journal Life Sciences, Society and Policy, published the article “Toward new human rights in the age of neuroscience and neurotechnology“ where they called for the creation of legislation which would protect human right to freedom and other human rights from the abuse of technologies opening access to the human brain. In the article they wrote that “the mind is a kind of last refuge of personal freedom and self-determination” and “at present, no specific legal or technical safeguard protects brain data from being subject to the same data-mining and privacy intruding measures as other types of information“. Among the world media only the British newspaper The Guardian wrote about their proposal (see this). This fact suggests that in the actual democratic world there exists no political will to forbid remote control of human thoughts and feelings, no matter that such perspective breaks elementary principles of democracy.

In 2016 and 2017 10 European organizations tried to convince the European Parliament and the European Commission to enact the legislation that would ban the remote control of activity of the human nervous system, since pulsed microwaves could be used to manipulate the human nervous system at a distance at present time already (see this). Then in 2017, 19 world organizations addressed the G20 meeting with the same proposal. They received no positive response to their effort.

To achieve the ban of the use of remote mind control technologies it is necessary to work out an international agreement. In the past century the USA and Russia built systems (HAARP and Sura), capable to produce, by manipulation of the ionosphere, extra long electromagnetic waves in frequencies corresponding to frequencies of the activity of the human nervous system and in this way to control the brain activity of populations of vast areas of this planet (See this, “Psychoelectronic Threat to Democracy“). At the beginning of this year China announced the building of a similar, more advanced, system. The Chinese daily The South China Morning Post admitted in its article that the system could be used to control the activity of the human nervous system.

The politicians should, instead of classifying those weapons of mass destruction, make effort to create more democratic system of international politics to replace the current system of struggle for military power. Only in this way conditions could be provided for the ban of use of   If this does not happen, in a few years there will be no chance to preserve democracy.

By Mojmir Babacek

Mojmir Babacek is the founder of the International Movement for the Ban of the Manipulation of the Human Nervous System by Technical Means,  He is the author of numerous articles on the issue of mind manipulation. 

Elon Musk and Mark Zuckerberg has been developing there own startup of Syntetic Telepathy

This invention we give away for free to someone who wants to build a AI assistant startup:

(Read the warning in the end of this post)

It should work to build a interface for telepathy/ silent communication with a AI assistant in a smartphone with a neurophone sensor:
https://youtu.be/U_QxkirKW74

My suggestion is to use the sensor for Touch ID for communication with the AI.
When you touch the sensor you hear the assistant through your skin:
https://www.lifewire.com/sensors-that-make-iphone-so-cool-2…

And a interface based on this information for speaking with the assistant:
The Audeo is a sensor/device which detects activity in the larynx (aka. voice box) through EEG (Electroencephalography). The Audeo is unique in it’s use of EEG in that it is detecting & analyzing signals outside the brain on their path to the larynx.1 The neurological signals/data are then encrypted and then transmitted to a computer to be processed using their software (which can be seen being used in Kimberly Beals’ video).2 Once it is analyzed and processed the data can then be represented using a computer speech generator.

Possibilities

The Audeo is a great sensor/device to detect imagined speech. It has an infinite amount of uses, especially in our areas of study. Here are some videos that show what the Audeo can be used for:
http://nerve.boards.net/…/79/audeo-ambient-using-voice-input
In a $6.3 million Army initiative to invent devices for telepathic communication, Gerwin Schalk, underwritten in a $2.2 million grant, found that it is possible to use ECoG https://en.m.wikipedia.org/wiki/Electrocorticography signals to discriminate the vowels and consonants embedded in spoken and in imagined words.
http://m.phys.org/…/2008-08-scientists-synthetic-telepathy.…

The results shed light on the distinct mechanisms associated with production of vowels and consonants, and could provide the basis for brain-based communication using imagined speech.
https://books.google.se/books…

http://scholar.google.se/scholar…
Research into synthetic telepathy using subvocalization https://en.m.wikipedia.org/wiki/Subvocalization is taking place at the University of California, Irvine under lead scientist Mike D’Zmura. The first such communication took place in the 1960s using EEG to create Morse code using brain alpha waves.

https://en.m.wikipedia.org/wiki/Subvocal_recognition

https://en.m.wikipedia.org/wiki/Throat_microphone

https://en.m.wikipedia.org/wiki/Silent_speech_interface

Why do Magnus Olsson and Leo Angelsleva

give you this opportunity for free?

Because Facebook can use you and your data in research for free and I think someone else than Mark Zuckerberg should get this opportunity:
https://m.huffpost.com/us/entry/5551965

Neurotechnology, Elon Musk and the goal of human enhancement

Brain-computer interfaces could change the way people think, soldiers fight and Alzheimer’s is treated. But are we in control of the ethical ramifications?

Extending the human mind … Elon Musk.
Extending the human mind …

At the World Government Summit in Dubai in February, Tesla and SpaceX chief executive Elon Musk said that people would need to become cyborgs to be relevant in an artificial intelligence age. He said that a “merger of biological intelligence and machine intelligence” would be necessary to ensure we stay economically valuable.

Soon afterwards, the serial entrepreneur created Neuralink, with the intention of connecting computers directly to human brains. He wants to do this using “neural lace” technology – implanting tiny electrodes into the brain for direct computing capabilities.

Brain-computer interfaces (BCI) aren’t a new idea. Various forms of BCI are already available, from ones that sit on top of your head and measure brain signals to devices that are implanted into your brain tissue.

They are mainly one-directional, with the most common uses enabling motor control and communication tools for people with brain injuries. In March, a man who was paralysed from below the neck moved his hand using the power of concentration.

Cognitive enhancement

A researcher uses a brain-computer interface helmet at the Centre National de la Recherche Scientifique, Grenoble.
A researcher uses a brain-computer interface helmet at the Centre National de la Recherche Scientifique, Grenoble. Photograph: Jean-Pierre Clatot/AFP/Getty Images

But Musk’s plans go beyond this: he wants to use BCIs in a bi-directional capacity, so that plugging in could make us smarter, improve our memory, help with decision-making and eventually provide an extension of the human mind.

“Musk’s goals of cognitive enhancement relate to healthy or able-bodied subjects, because he is afraid of AI and that computers will ultimately become more intelligent than the humans who made the computers,” explains BCI expert Professor Pedram Mohseni of Case Western Reserve University, Ohio, who sold the rights to the name Neuralink to Musk.

“He wants to directly tap into the brain to read out thoughts, effectively bypassing low-bandwidth mechanisms such as speaking or texting to convey the thoughts. This is pie-in-the-sky stuff, but Musk has the credibility to talk about these things,” he adds.

Musk is not alone in believing that “neurotechnology” could be the next big thing. Silicon Valley is abuzz with similar projects. Bryan Johnson, for example, has also been testing “neural lace”. He founded Kernel, a startup to enhance human intelligence by developing brain implants linking people’s thoughts to computers.

In 2015, Facebook CEO Mark Zuckerberg said that people will one day be able to share “full sensory and emotional experiences” online – not just photos and videos. Facebook has been hiring neuroscientists for an undisclosed project at its secretive hardware division, Building 8.

However, it is unlikely this technology will be available anytime soon, and some of the more ambitious projects may be unrealistic, according to Mohseni.

Pie-in-the-sky

A brain scan of a patient with Alzheimer’s.
A brain scan of a patient with Alzheimer’s. Photograph: BSIP/UIG via Getty Images

“In my opinion, we are at least 10 to 15 years away from the cognitive enhancement goals in healthy, able-bodied subjects. It certainly appears to be, from the more immediate goals of Neuralink, that the neurotechnology focus will continue to be on patients with various neurological injuries or diseases,” he says.

Mohseni says one of the best current examples of cognitive enhancement is the work of Professor Ted Berger, of the University of Southern California, who has been working on a memory prosthesis to replace the damaged parts of the hippocampus in patients who have lost their memory due to, for example, Alzheimer’s disease.

“In this case, a computer is to be implanted in the brain that acts similaly to the biological hippocampus from an input and output perspective,” he says. “Berger has results from both rodents and non-human primate models, as well as preliminary results in several human subjects.”

Mohseni adds: “The [US government’s] Defense Advanced Research Projects Agency (DARPA) currently has a programme that aims to do cognitive enhancement in their soldiers – ie enhance learning of a wide range of cognitive skills, through various mechanisms of peripheral nerve stimulation that facilitate and encourage neural plasticity in the brain. This would be another example of cognitive enhancement in able-bodied subjects, but it is quite pie-in-the-sky, which is exactly how DARPA operates.”

Understanding the brain

Heading for cognitive enhancement? … US soldiers in Bagram, Afghanistan.
Heading for cognitive enhancement? … US soldiers in Bagram, Afghanistan. Photograph: Aaron Favila/AP

In the UK, research is ongoing. Davide Valeriani, senior research officer at University of Essex’s BCI-NE Lab, is using an electroencephalogram (EEG)-based BCI to tap into the unconscious minds of people as they make decisions.

“Everyone who makes decisions wears the EEG cap, which is part of a BCI, a tool to help measure EEG activity … it measures electrical activity to gather patterns associated with confident or non-confident decisions,” says Valeriani. “We train the BCI – the computer basically – by asking people to make decisions without knowing the answer and then tell the machine, ‘Look, in this case we know the decision made by the user is correct, so associate those patterns to confident decisions’ – as we know that confidence is related to probability of being correct. So during training the machine knows which answers were correct and which one were not. The user doesn’t know all the time.”

Valeriani adds: “I hope more resources will be put into supporting this very promising area of research. BCIs are not only an invaluable tool for people with disabilities, but they could be a fundamental tool for going beyond human limits, hence improving everyone’s life.”

He notes, however, that one of the biggest challenges with this technology is that first we need to better understand how the human brain works before deciding where and how to apply BCI. “This is why many agencies have been investing in basic neuroscience research – for example, the Brain initiative in the US and the Human Brain Project in the EU.”

Whenever there is talk of enhancing humans, moral questions remain – particularly around where the human ends and the machine begins. “In my opinion, one way to overcome these ethical concerns is to let humans decide whether they want to use a BCI to augment their capabilities,” Valeriani says.

“Neuroethicists are working to give advice to policymakers about what should be regulated. I am quite confident that, in the future, we will be more open to the possibility of using BCIs if such systems provide a clear and tangible advantage to our lives.”

Facebook is building brain-computer interfaces

Facebook is improving the 360 video experience by predicting where you will look

The plan is to eventually build non-implanted devices that can ship at scale. And to tamp down on the inevitable fear this research will inspire, Facebook tells me “This isn’t about decoding random thoughts. This is about decoding the words you’ve already decided to share by sending them to the speech center of your brain.” Facebook likened it to how you take lots of photos but only share some of them. Even with its device, Facebook says you’ll be able to think freely but only turn some thoughts into text.

Skin-Hearing

Meanwhile, Building 8 is working on a way for humans to hear through their skin. It’s been building prototypes of hardware and software that let your skin mimic the cochlea in your ear that translates sound into specific frequencies for your brain. This technology could let deaf people essentially “hear” by bypassing their ears.

A team of Facebook engineers was shown experimenting with hearing through skin using a system of actuators tuned to 16 frequency bands. A test subject was able to develop a vocabulary of nine words they could hear through their skin.

To underscore the gravity of Building 8s mind-reading technology, Dugan started her talk by saying she’s never seen something as powerful as the smartphone “that didn’t have unintended consequences.” She mentioned that we’d all be better off if we looked up from our phones every so often. But at the same time, she believes technology can foster empathy, education and global community.

Building 8’s Big Reveal

Facebook hired Dugan last year to lead its secretive new Building 8 research lab. She had previously run Google’s Advanced Technology And Products division, and was formerly a head of DARPA.

Facebook built a special Area 404 wing of its Menlo Park headquarters with tons of mechanical engineering equipment to help Dugan’s team quickly prototype new hardware. In December, it signed rapid collaboration deals with Stanford, Harvard, MIT and more to get academia’s assistance.

Yet until now, nobody really knew what Building 8 was…building. Business Insider had reported on Building 8’s job listings and that it might show off news at F8.

According to these job listings, Facebook is looking for a Brain-Computer Interface Engineer “who will be responsible for working on a 2-year B8 project focused on developing advanced BCI technologies.” Responsibilities include “Application of machine learning methods, including encoding and decoding models, to neuroimaging and electrophysiological data.” It’s also looking for a Neural Imaging Engineer who will be “focused on developing novel non-invasive neuroimaging technologies” who will “Design and evaluate novel neural imaging methods based on optical, RF, ultrasound, or other entirely non-invasive approaches.”

Elon Musk has been developing his own startup called Neuralink for creating brain interfaces.

Facebook Building 8 R&D division head Regina Dugan

Facebook has built hardware before to mixed success. It made an Android phone with HTC called the First to host its Facebook Home operating system. That flopped. Since then, Facebook proper has turned its attention away from consumer gadgetry and toward connectivity. It’s built the Terragraph Wi-Fi nodesProject ARIES antennaAquila solar-powered drone and its own connectivity-beaming satellite from its internet access initiative — though that blew up on the launch pad when the SpaceX vehicle carrying it exploded.

Facebook has built and open sourced its Surround 360 camera. As for back-end infrastructure, it’s developed an open-rack network switch called Wedge, the Open Vault for storage, plus sensors for the Telecom Infra Project’s OpenCellular platform. And finally, through its acquisition of Oculus, Facebook has built wired and mobile virtual reality headsets.

Facebook’s Area 404 hardware lab contains tons of mechanical engineering and prototyping equipment

But as Facebook grows, it has the resources and talent to try new approaches in hardware. With over 1.8 billion users connected to just its main Facebook app, the company has a massive funnel of potential guinea pigs for its experiments.

Today’s announcements are naturally unsettling. Hearing about a tiny startup developing these advanced technologies might have conjured images of governments or coporate conglomerates one day reading our mind to detect thought crime, like in 1984. Facebook’s scale makes that future feel more plausible, no matter how much Zuckerberg and Dugan try to position the company as benevolent and compassionate. The more Facebook can do to institute safe-guards, independent monitoring, and transparency around how brain-interface technology is built and tested, the more receptive it might find the public.

A week ago Facebook was being criticized as nothing but a Snapchat copycat that had stopped innovating. Today’s demos seemed design to dismantle that argument and keep top engineering talent knocking on its door.

“Do you want to work for the company who pioneered putting augmented reality dog ears on teens, or the one that pioneered typing with telepathy?” You don’t have to say anything. For Facebook, thinking might be enough.

The MOST IMPORTANT QUESTIONS!

There is no established legal protection for the human subject when researchers use Brain Machine Interface (cybernetic technology) to reverse engineer the human brain.

The progressing neuroscience using brain-machine-interface will enable those in power to push the human mind wide open for inspection.

There is call for alarm. What kind of privacy safeguard is needed, computers can read your thoughts!

In recent decades areas of research involving nanotechnology, information technology, biotechnology and neuroscience have emerged, resulting in, products and services.

We are facing an era of synthetic telepathy, with brain-computer-interface and communication technology based on thoughts, not speech.

An appropriate albeit alarming question is: “Do you accept being enmeshed in a computer network and turned into a multimedia module”?  authorities will be able to collect information directly from your brain, without your consent.

This kind of research in bioelectronics has been progressing for half a century.

Brain Machine Interface (Cybernetic technology) can be used to read our minds and to manipulate our sensory perception!

Invited presentation by Magnus Olsson at the 2017 First Annual Unity and Hope Conference

Invited presentation by Magnus Olsson

“Invited presentation by Magnus Olsson, at the 2017 First Annual Unity and Hope Conference” This event was for targeted individuals and those concerned about the growing crimes of electronic harassment.

The conference was held from October 20-22 at the Mass Audubon Blue Hills Trailside Museum: 1904 Canton Ave., Milton, MA 02186, USA. This presentation was co-produced by Mårten Hernebring. The speaker, Magnus Olsson, can be reached at bionicgate@live.se Event Description from the Conference Web Site: “Our goal is to bring together as many support groups, media shows, activism groups, and organizations of targeted individuals, so we can work together and learn from each other and strategize on solutions to bring about change and end the suffering of hundreds of thousands of victims nationwide.

The number of people experiencing electronic harassment and gang-stalking is growing exponentially daily. Our hope is to come together, to build, empower, and educate the community on technology, resources, and support, and as a unified front attempt to educate the public. As a result of this conference, we will be able to strategically fight for freedom and justice for the victims of targeted crimes.

The goal of this conference is to unify all the groups worldwide and provide a knowledge and understanding of the program and the technology. We also strongly encourage targeted individuals to bring friends and family for support and to educate the ones around them on what invisible crimes are being committed against them.”

Sprinkling of neural dust opens door to electroceuticals

Sprinkling of neural dust opens door to electroceuticals

UC Berkeley engineers have built the first dust-sized, wireless sensors that can be implanted in the body, bringing closer the day when a Fitbit-like device could monitor internal nerves, muscles or organs in real time.

Wireless, batteryless implantable sensors could improve brain control of prosthetics, avoiding wires that go through the skull. (UC Berkeley video by Roxanne Makasdjian and Stephen McNally)

Because these batteryless sensors could also be used to stimulate nerves and muscles, the technology also opens the door to “electroceuticals” to treat disorders such as epilepsy or to stimulate the immune system or tamp down inflammation.

The so-called neural dust, which the team implanted in the muscles and peripheral nerves of rats, is unique in that ultrasound is used both to power and read out the measurements. Ultrasound technology is already well-developed for hospital use, and ultrasound vibrations can penetrate nearly anywhere in the body, unlike radio waves, the researchers say.

“I think the long-term prospects for neural dust are not only within nerves and the brain, but much broader,“ said Michel Maharbiz, an associate professor of electrical engineering and computer sciences and one of the study’s two main authors. “Having access to in-body telemetry has never been possible because there has been no way to put something supertiny superdeep. But now I can take a speck of nothing and park it next to a nerve or organ, your GI tract or a muscle, and read out the data.“

sensor on a rat nerve fiber

 

The sensor, 3 millimeters long and 1×1 millimeters in cross section, attached to a nerve fiber in a rat. Once implanted, the batteryless sensor is powered and the data read out by ultrasound. (Ryan Neely photo)

Maharbiz, neuroscientist Jose Carmena, a professor of electrical engineering and computer sciences and a member of the Helen Wills Neuroscience Institute, and their colleagues will report their findings in the August 3 issue of the journal Neuron.

The sensors, which the researchers have already shrunk to a 1 millimeter cube – about the size of a large grain of sand – contain a piezoelectric crystal that converts ultrasound vibrations from outside the body into electricity to power a tiny, on-board transistor that is in contact with a nerve or muscle fiber. A voltage spike in the fiber alters the circuit and the vibration of the crystal, which changes the echo detected by the ultrasound receiver, typically the same device that generates the vibrations. The slight change, called backscatter, allows them to determine the voltage.

Motes sprinkled thoughout the body

In their experiment, the UC Berkeley team powered up the passive sensors every 100 microseconds with six 540-nanosecond ultrasound pulses, which gave them a continual, real-time readout. They coated the first-generation motes – 3 millimeters long, 1 millimeter high and 4/5 millimeter thick – with surgical-grade epoxy, but they are currently building motes from biocompatible thin films which would potentially last in the body without degradation for a decade or more.

sensor showing piezoelectric crystal.

 

The sensor mote contains a piezoelectric crystal (silver cube) plus a simple electronic circuit that responds to the voltage across two electrodes to alter the backscatter from ultrasound pulses produced by a transducer outside the body. The voltage across the electrodes can be determined by analyzing the ultrasound backscatter. (Ryan Neely photo)

While the experiments so far have involved the peripheral nervous system and muscles, the neural dust motes could work equally well in the central nervous system and brain to control prosthetics, the researchers say. Today’s implantable electrodes degrade within 1 to 2 years, and all connect to wires that pass through holes in the skull. Wireless sensors – dozens to a hundred – could be sealed in, avoiding infection and unwanted movement of the electrodes.

“The original goal of the neural dust project was to imagine the next generation of brain-machine interfaces, and to make it a viable clinical technology,” said neuroscience graduate student Ryan Neely. “If a paraplegic wants to control a computer or a robotic arm, you would just implant this electrode in the brain and it would last essentially a lifetime.”

In a paper published online in 2013, the researchers estimated that they could shrink the sensors down to a cube 50 microns on a side – about 2 thousandths of an inch, or half the width of a human hair. At that size, the motes could nestle up to just a few nerve axons and continually record their electrical activity.

“The beauty is that now, the sensors are small enough to have a good application in the peripheral nervous system, for bladder control or appetite suppression, for example,“ Carmena said. “The technology is not really there yet to get to the 50-micron target size, which we would need for the brain and central nervous system. Once it’s clinically proven, however, neural dust will just replace wire electrodes. This time, once you close up the brain, you’re done.“

The team is working now to miniaturize the device further, find more biocompatible materials and improve the surface transceiver that sends and receives the ultrasounds, ideally using beam-steering technology to focus the sounds waves on individual motes. They are now building little backpacks for rats to hold the ultrasound transceiver that will record data from implanted motes.

Diagram showing the components of the sensor.

 

Diagram showing the components of the sensor. The entire device is covered in a biocompatible gel.

They’re also working to expand the motes’ ability to detect non-electrical signals, such as oxygen or hormone levels.

“The vision is to implant these neural dust motes anywhere in the body, and have a patch over the implanted site send ultrasonic waves to wake up and receive necessary information from the motes for the desired therapy you want,” said Dongjin Seo, a graduate student in electrical engineering and computer sciences. “Eventually you would use multiple implants and one patch that would ping each implant individually, or all simultaneously.”

Ultrasound vs radio

Maharbiz and Carmena conceived of the idea of neural dust about five years ago, but attempts to power an implantable device and read out the data using radio waves were disappointing. Radio attenuates very quickly with distance in tissue, so communicating with devices deep in the body would be difficult without using potentially damaging high-intensity radiation.

A sensor implanted on a peripheral nerve is powered and interrogated by an ultrasound transducer. The backscatter signal carries information about the voltage across the two electrodes. The 'dust' mote was pinged every 100 microseconds with six 540-nanosecond ultrasound pulses.

 

A sensor implanted on a peripheral nerve is powered and interrogated by an ultrasound transducer. The backscatter signal carries information about the voltage across the sensor’s two electrodes. The ‘dust’ mote was pinged every 100 microseconds with six 540-nanosecond ultrasound pulses.

Marharbiz hit on the idea of ultrasound, and in 2013 published a paper with Carmena, Seo and their colleagues describing how such a system might work. “Our first study demonstrated that the fundamental physics of ultrasound allowed for very, very small implants that could record and communicate neural data,” said Maharbiz. He and his students have now created that system.

“Ultrasound is much more efficient when you are targeting devices that are on the millimeter scale or smaller and that are embedded deep in the body,” Seo said. “You can get a lot of power into it and a lot more efficient transfer of energy and communication when using ultrasound as opposed to electromagnetic waves, which has been the go-to method for wirelessly transmitting power to miniature implants”

“Now that you have a reliable, minimally invasive neural pickup in your body, the technology could become the driver for a whole gamut of applications, things that today don’t even exist,“ Carmena said.

Other co-authors of the Neuron paper are graduate student Konlin Shen, undergraduate Utkarsh Singhal and UC Berkeley professors Elad Alon and Jan Rabaey. The work was supported by the Defense Advanced Research Projects Agency of the Department of Defense.

RELATED INFORMATION

Worldcach.com’s Leo Angesleva (Sweden) about Mind Control and the Transhumanist Agenda and Alfred Webre

Alfred Lambremont Webre, Worldcach.com’s Leo Angesleva (Sweden) about Mind Control and the  Transhumanist Agenda

Interview with Alfred Lambremont Webre, Worldcach.com’s Leo Angesleva details how the “Obama” [read “U.S.”] Brain Project and the U.S. Army, along with other agencies covertly committed to the Transhumanist Agenda, are facilitating AI Artificial Intelligence reading and controlling all human brains and minds worldwide, and constructing Cyborg armies.

ibm brain computer

World CACH

%d bloggers like this: