Biotechnology and Human Augmentation

Mick Ryan and Therese Keane


Over the last decade, military theorists and authors in the fields of future warfare and strategy have examined in detail the potential impacts of an ongoing revolution in information technology. There has been a particular focus on the impacts of automation and artificial intelligence on military and national security affairs. This attention on silicon-based disruption has nonetheless meant that sufficient attention may not have been paid to other equally profound technological developments. One of those developments is the field of biotechnology.

There have been some breathtaking achievements in the biological realm over the last decade. Human genome sequencing has progressed from a multi-year and multi-billion dollar undertaking to a much cheaper and quicker process, far outstripping Moore’s Law. Just as those concerned with national security affairs must monitor disruptive silicon-based technologies, leaders must also be literate in the key biological issues likely to impact the future security of nations. One of the most significant matters in biotechnology is that of human augmentation and whether nations should augment military personnel to stay at the leading edge of capability.

Biotechnology and Human Augmentation

Military institutions will continue to seek competitive advantage over potential adversaries. While this is most obvious in the procurement of advanced platforms, human biotechnological advancement is gaining more attention. As a 2017 CSIS report on the Third Offset found most new technological advances will provide only a temporary advantage, assessed to be no more than five years. In this environment, some military institutions may view the newer field of human augmentation as a more significant source of a future competitive edge.

Biological enhancement of human performance has existed for millenia. The discovery of naturally occurring compounds by our ancestors has led to many of the cognitive and physical enhancements currently available. In the contemporary environment, for example, competition in national and international sports continues to fuel a race between creation of the next generation of performance enhancements and regulatory bodies developing detection methods. One example of this is the use of gene doping to hone the competitive edge in athletes, an off-label use of gene therapies originally developed for the treatment of debilitating genetic and acquired diseases. Despite the possibility of cancer and a range of other lethal side effects, some athletes consider these an acceptable risk. Might this not translate to adversaries adopting any possible advantage without equal disregard for ethics and safety considerations?

Gene Doping (Ralf Hiemisch)

It cannot be safely be assumed all states will share  the same ethical, moral, legal, or policy principals as Western democratic societies. Based on developmental trajectories to date, contemporary military institutions should anticipate that all forms of human enhancements, whether relatively benign or highly controversial, will continue to evolve. For contemporary strategic leaders, the key is to anticipate how these developments may potentially impact on military institutions.

Impacts on Military Institutions

Theoretically, future advances in biotechnology may permit the augmentation of cognitive performance. However, given the challenges of biocompatibility of silicon, significant enhancements to human performance in the near future are likely to be found in prosthetics, wearable computing, or human teaming with artificial intelligence. In the longer term, some forms of gene therapy may obviate the need for implants. Noting this, a selection of likely challenges are explored below.

Previously, integration of new groups into the military  dealt with human beings.

A first order issue will be group cohesion. Military institutions have deep experience integrating newcomers into their ranks. Fundamental to effective future teaming will be evolving this approach to establish trust and group cohesion between normal humans and those who are augmented. The degree to which military leaders can and should trust augmented personnel to make decisions about saving and taking lives is likely to be an evolutionary process. It also remains to be seen whether or not teams comprised of augmented and non-augmented humans are capable of developing trust. Experimentation and trials are needed to establish whether augmented people will bias away from decisions and input from non-augmented people and vice versa. While institutions can learn from historical integration challenges, there is one essential difference with augmented humans. Previously, integration of new groups into the military  dealt with human beings. If augmentation using neurotechnology significantly enhances cognitive function, this may represent a separate and distinct group of future Homo sapiens.

The second challenge will be accessibility. Military institutions will need to decide what proportion of its forces will be augmented. Given that early generations of this biotechnology may be expensive, it is unlikely an entire military institution can be augmented. If so, who will be augmented and why? Military institutions will need to develop a value proposition to ensure physical and cognitive augmentation produces superior outcomes to the use of un-augmented personnel. Yet another question to ask is whether military personnel will be de-augmented on leaving the service. The transition of augmented personnel into a largely unaugmented populace may be traumatic for military personnel, and for society more broadly. Even more severe in its repercussions may be transitioning de-augmented personnel into a populace where augmentation is ubiquitous.

The Role of Humans in the Age of Robots (The Luvo)

The third challenge will be conceptual. One Chinese scientist, writing in 2006, has proposed military biotechnology offers the chance to shift to a “new balance between defence and attack, giving rise to a new concept of warfare, a new balance of military force, and new attacking power.” While the emphasis of this particular article was on a more merciful form of warfare—about which we should be skeptical—it nonetheless highlights the requirement to rethink what biotechnology and human augmentation means for how military institutions develop warfighting concepts. When humans arrive with cognitive enhancement, a range of tactical, operational, and strategic concepts may become irrelevant. Strategic thinking, using a combination of biological and silicon-based technologies could take organisations in very different directions than is presently the case. It also bears examining whether those with augmentation will enable greater diversity of performance (particularly in the intellectual realm) or if it will lead to increased homogenisation of physical and cognitive performance.

The fourth challenge is obsolescence. A fundamental challenge for humans waging war is that, despite technological advances, one of the weakest links is the physical capacity of the human. As Patrick Lin was written, technology makes up for our absurd frailty. Therefore, might normal humans without augmentation become irrelevant in a new construct where military institutions possess large numbers of physically and cognitively augmented personnel? It remains to be seen whether unaugmented humans might able to compete with physically and cognitively augmented military personnel. The augmentation of humans for different physical and cognitive functions may also drive change in how military institutions operate, plan, and think strategically.

A fifth challenge is military education and training. Traditional military training emphases the teaching of humans to achieve learning outcomes and missions as individuals and teams. In an integrated augmented/non-augmented institution, training methods must evolve to account for the different and improved capabilities of augmented personnel and to blend the capabilities of augmented and non-augmented personnel. Similarly, education for military leaders currently seeks to achieve their intellectual development in the art and science of war. If humans augmented with cognitive enhancements are present, both institutional and individual professional military education will also need to evolve. Learning delivery, as well as key learning outcomes, will have to be re-examined to account for the enhanced physical and cognitive performance of this new segment of the military workforce. Even issues as basic as fitness assessments must be re-examined. Potentially, military organisations could drop physical assessments by automatically augmenting people to the institutionally desired level of performance.

The sixth challenge is one of choice. Command structures demand a reduction in an individual’s free will to refuse such that informed consent is not quite the same as for the general population. And when experimental augmentation options progress to become approved interventions, can we equate a parent considering whether to choose an approved cognitive augmentation option for their child to a soldier contemplating the same when operating alongside augmented peers where the stakes are orders of magnitude greater? How much choice will military personnel have in the augmentation process? Will this be on a volunteer basis or by direction, and what are the moral, legal, and ethical implications of these stances? Speculation that augmentation may become mandatory for some professions may also apply to the military.

The final issue addressed in this article is one of ethics. Research communities are grappling with the ethical and moral implications of augmentation for society as a whole. While the first concern in evaluating the military applications of biotechnology is international humanitarian law, bioethics must also be considered. Ethical considerations pervade almost every aspect of human augmentation, and there are ethical considerations threaded through the other challenges raised in this article. For example, beyond the first order questions of whether we should augment soldiers are issues such as how much augmentation should be allowable. Military institutions should also assess the cumulative effects of multiple augmentations and the consequences of converging augmentation. There may also be a point at which a highly augmented human may cross the human-machine barrier, as well as a range of unanticipated capabilities that emerge from different augmentation combinations.

A Way Ahead

These issues must be informed by those within the biotechnology community, but they alone cannot solve them. Broader involvement by senior military, government, and community leaders is required. One expert in biotechnology has written that “clearly the new forms of power being unleashed by bio-technology will have to be harnessed and used with greater wisdom than power has been used in the past.” If military institutions are to demonstrate wisdom in their investments in biotechnology, they must explore societal impacts as well as effects within military institutions.

“Splitting humankind into biological castes will destroy the foundations of liberal ideology. Liberalism still presupposes that all human beings have equal value and authority.”

It is likely some augmentation will be—at least initially—expensive.  It may be beyond the means of most people in society and, potentially, many government and corporate institutions. If only military personnel might be augmented, what are the impacts on civil-military relationships, and who would make this decision? In this construct, it could be unethical to deny the benefits of augmentation to wider society. However as Yuval Harari has noted, this may see a differentiation in how society views augmented and non-augmented people—“Splitting humankind into biological castes will destroy the foundations of liberal ideology. Liberalism still presupposes that all human beings have equal value and authority.” In Western democracies, this poses profound questions about conferred advantage, societal sense of fairness and equality, and the value of individuals within society.

In Western democratic systems, development of regulation, policy, and legal frameworks is not keeping pace with the current tempo of complicated technological advancements. It cannot be assumed other states are allowing these deficits to slow their efforts in biotechnology, not to mention the unregulated efforts of non-state actors. While the focus of the fourth industrial revolution remains predominantly on technologies, perhaps for Australia (and other democracies) it is also these areas which require a complementary revolution in the Whole of Nation enterprise so as to keep up with the pace of change and facilitate systematic assessment of human augmentation implications.

Conclusion

The potential to augment the physical and cognitive capacity of humans is seductive. There will be some who will not demonstrate responsible behaviour in taking advantage of these new technologies. Humans have demonstrated in the past the capacity to responsibly manage disruptive technologies such as flight, atomic weapons, and space-based capabilities. This means thoughtful academics, national security practitioners, and people from wider society must be part of the discussion on why and how biotechnology might be used in future. It is vital for the future of global security, and for the human race, that mechanisms for responsible ethical and legal use of biotechnology are considered and developed. This must occur in parallel with the scientific endeavours to develop new biotechnologies.


Mick Ryan is an Australian Army officer, and Commander of the Australian Defence College in Canberra, Australia. A distinguished graduate of Johns Hopkins University and the USMC Staff College and School of Advanced Warfare, he is a passionate advocate of professional education and lifelong learning. Therese Keane is a scientist with the Defence Science and Technology Group. Although with a background in mathematics now expanding into biotechnology. The views expressed are the authors’ and do not reflect the official position of the Australian Department of Defence or the Australian Government.

The psychoacoustic effect of infrasonic, sonic and ultrasonic frequencies within non-lethal military warfare techniques.

The psychoacoustic effect of infrasonic, sonic and ultrasonic frequencies within non-lethal military warfare techniques.

Exploring the use of audio to influence humans physically and psychologically as a means of non-lethal warfare methods throughout both the 20th and the 21st century.

Infrasonic Frequencies

The term ‘infrasound’ defines itself as the inaudible frequency range below the human bandwidth of around 20Hz. When discussing infrasound, it’s often associated with acts of

nature, sources such as the Fuego volcano in Guatemala emitted 120 decibels of infrasonic sound ranging around 10Hz (Georgia State University, no date). It is with occurrences like this that calls for a large amount of infrasonic monitoring to counter natural disaster detection. Beyond the use of infrasound detection, this frequency range, of which is inaudible to us, has been researched throughout the decades to investigate its effects on the human body. One of which is it’s application to military usage.

Throughout the 20th and 21st century, there has been a vast amount of research collected and interest gained in the use of non-lethal weapons (NLW), which are intended to immobilise or impair targets without causing permanent or severe damage to the human body. As technologies have developed, it’s apparent that military bodies within the world seek to create weapons resulting in “war’s without death” (Scott & Monitor, 2010). However, it is within the creation of new weapons that many issues arise, which perhaps may be a reason there is little evidence for the deployment of NLW. It’s apparent that some concepts of using infrasound may violate disarmament treaties, for example, the 1999 European Committee stated:

“global ban on all research and development, whether military or civilian, which seeks to apply knowledge of the chemical, electrical, sound vibration or other functioning of the human brain to the development of human beings, including a ban on actual or possible deployment of such systems” (Giordano, 2014).

Thus, this may result in military bodies taking a critical view before the acceptance of research to be made. However, it is important to understand at this point within this study, that this does not just encompass infrasonic sound but also applies to ultrasonic sound too.

Despite this, it is the alleged properties that infrasound, when applied correctly to humans, that have allowed for the field to be of interest within military application. Within Table 1 we can see a notable number of applications that infrasound could possibly or has been applied for:

Infrasound has resulted in a large amount of interest within the creation of NLW. It is apparent that given the technical depth that infrasound can be applied to within weaponry, a very in depth analysis of each device would be required. The present chapter within this text will analyse research collated that will allow for a greater insight into the application of infrasound on the human body, thus allowing us to formulate a background before exploring the outcome of the research tested within this study.

Physical and Psychological Effects

Infrasound has been utilised as a means of sonic warfare for physical human impact, dating back to World War 1. Acoustic imaging was the primitive use of infrasonic sound during World War 2, for the use of radar and sonar techniques in order to detect locations of enemy artillery (Ihde, 2015). Despite there bing many references to acoustic weaponry, as early as World War 2, it is in the 1960’s that actual documented research becomes more available. As described in, Secret Weapons of the Third Reich (E. Simon, 1971), one such device is discussed:

“…design consisted of a parabolic reflector, 3.2 meters in diameter, having a short tube which was the combustion chamber or sound generator, extending to the rear from the vertex of the parabola. The chamber was fed at the rear by two coaxial nozzles, the outer nozzle emitting methane, and the central nozzle oxygen. The length of the chamber was one- quarter the wavelength of the sound in air. Upon initiation, the first shock wave was reflected back from the openend of the chamber and initiated the second explosion. The frequency was from 800 to 1500 impulses per second. The main lobe of the sound intensity pattern had a 65 degree angle of opening, and at 60 meters’ distance on the axis a pressure of 1000 microbars had been measured. No physiological experiments were conducted, but it was estimated that at such a pressure it would take from 30 to 40 seconds to kill a man. At greater ranges, perhaps up to 300 meters, the effect, although not lethal, would be very painful and would probably disable a man for an appreciable length of time. Vision would be affected, and low- level exposures would cause point sources of light to appear as lines.”

This device, known as the ‘Wirbelwind Kanonew’ , is perhaps the only known fully developed infrasonic weapon created in order to physically effect it’s target, with the intention of countering enemy aircraft and infantry by creating a vortex of sound (Crab, 2008). Moreover, there are cases that perhaps suggest a possible application of infrasound to cause physical damage to the ear drum. (Harding, Bohne, Lee, & Salt, 2007) cites that frequency ranges around 4Hz, at high decibels, are perhaps able damage parts of the ear drum. The vibrational movement created by the infrasonic frequency result in large fluid movements of cochlear fluid, the intermixing of cochlear fluid is hypothesised to result in lasting damage. There are however, in contrary to this, studies also suggest the mechanisms of the ear have a normal reaction to infrasonic sound. As preciously mentioned, the central mechanism of the ear is the cochlear; within the cochlear there are two sensory cells, the inner hair cells (IHC) and the outer hair cells (OHC) (Cook, 1999). IHC responses are dependant on velocity and due to the fluid within the ear, the stimulus lowers as the frequency lowers; in contrast, OHC have a greater response to low frequency ranges such as infrasound. As a result, the effect of infrasound on IHC’s within the ear, could be suggested as inefficient thus resulting in infrasound’s effect on the ear, physically, being normal (Salt & Hullar, 2010). However, this does not suggest that the effect of infrasound on both IHC and OHC do not have a psychological effect on the brain. Exposure to levels above 80db between 0.5Hz and 10Hz causing these possible vibrational movements within the ear’s functions, are said to cause psychological changes such as fear, sorrow, depression, anxiety, nausea, chest pressure and hallucinations (ECRIP, 2008). It is the result of this effect in the middle ear, that (Goodman, 2010 p. 18) cites as being discovered by military personnel during World War 1 and World War 2.

The effect of emotional and psychological change as a result of infrasonic exposure can later be found during the second Indochina war. In 1973, The United States deployed the Urban Funk Campaign, a psychoacoustic attack during the war with the intention of altering mental states of their enemies (Goodman, 2010). The device utilised both infrasonic and ultrasonic frequencies, which emitted high decibel oscillations from a mounted helicopter onto the Vietnamese ground troops (Toffler, Alvin, & Toffler, 1995). Though there is no record of the specification of this device, one can assume that the U.S Military had tested the infrasonic frequency ranges in order to achieve a psychological effect on it’s targets. As previously cited by (Goodman, 2010), it is documented that the frequency range of 7Hz is thought to instil effects of uneasiness, anxiety, fear and anger. (Walonick, 1990) reports in a experiment that below 8Hz had caused agitation and uneasiness for participants. Goodman also supports this discussing “It has been noted that certain infrasonic frequencies plug straight into the algorithms of the brain and nervous system. Frequencies of 7 hertz, for example, coincide with theta rhythms, thought to induce moods of fear and anger.” (Goodman, 2010). It is within the psychological change that we begin to question the reasoning behind it, many of the studies in the next chapter of this study suggest that resonance is perhaps the reason as to why there could be an emotional and psychological change to human’s when exposed to infrasonic frequencies.

Resonance

All objects have a property known as their resonant frequency, this involves the “re- enforcement of vibrations of a receiving system due to a similarity to the frequencies of the source” (Pellegrino & Productions, 1996). It is this property that is held within all matter, that we can apply sound as a means of resonance within the human body. It is resonance within the human body that is thought to create the psychological effects of that mentioned in the previous chapter.

Limited literature within the infrasonic frequency range allows for an array of research speculating conspiracies within the utilisation of infrasonic frequency ranges as a means of non-lethal weaponry and crowd control. As a result, this could lead to a plausible suggestion that military application of non-lethal audio weapons have not been made publicly available. A large influence on the development and notable usages of infrasonic frequencies as a means of deterrence, was the development of a low-frequency acoustic device by French scientist Vladimir Gavreau (Lothes, 2004). It is reported that Gavreau had discovered the infrasound weapon by result of a resonant frequency being emitted from a motor-driven ventilator within his office (Vassilatos, no date). Following this, Gavreau developed a device that emitted infrasonic sine wave frequencies around 7hertz, with military application, (Vassilatos, no date) said to induce painful symptoms effecting his laboratory staff with immediate effect, other results are reported of the likes of the feeling of fear and flight. Following this discovery Gavreau made discussions that highlighted the effect of infrasonic frequencies to humans, citing it as a possible cause of city dwellers’ stress (Broner, 2003). Gavreau’s discovery within this field has been largely researched and discussed throughout the acoustic warfare field. Vinokur, drew from Gavreau’s invention stating within his publication The Case of the Mythical Beast. (Vinokur, 1993)

“. . . sound with a frequency of less than 16 Hz is inaudible. It’s called infrasound, and its effect on human beings is not completely understood. We do know, however, that high- intensity infrasound causes headache, fatigue, and anxiety . . . Our internal organs (heart, liver, stomach, kidneys) are attached to the bones by elastic connective tissue, and at low frequencies may be considered simple oscillators. The natural frequencies of most of them are below 12 Hz (which is in the infrasonic range). Thus, the organs may resonate. Of course, the amplitude of any resonance vibrations depends significantly on damping, which transforms mechanical energy into thermal energy . . . this amplitude decreases as the damping increases. Also, the amplitude is proportional to the amplitude of the harmonic force causing the vibrations . . .”

It is also apparent that such frequencies have been used in many varying fields to provide evidence of it’s existence, exterior to military and police usage. Furthermore, British physiology researchers O’Keeffe & Angliss conducted an experiment to test the effects of infrasonic frequencies on the human brain in 2003. The method was conducted by playing 4 musical pieces to 700 participants two of which had 17hertz frequencies played unknowingly to the participants during the piece. Results found that 22% of the participants experienced a feeling of anxiety and fear (Stathatos, no date). A similar experiment entitled ‘The Haunt Project’ conducted by the Anomalistic Psychology Research Unit of Goldsmiths College, London, subjected 79 volunteers to a varying array of infrasonic frequencies. The primary analysis of the study cites that “63 (79.7%) of the participants felt dizzy or odd, 9 (11.4%) experienced sadness, 7 (8.9%) experienced terror” (French, Haque, Bunton- Stasyshyn, & Davis, 2009). It’s not unreasonable to state that within a varying amount of research conducted in this field, there is little evidence to suggest why infrasound actually has an effect on human emotion. Acoustic scientists investigating the result of noise pollution on workers determine that every organ within the human body has a resonant frequency and it’s own ‘acoustic properties’, this effect is discussed as a possible means as to why frequency has an effect on the human body (Prashanth & Venugopalachar, 2010). Additionally to this, Mahindra states that the resonant frequency of the eyeball has a direct effect on emotional states of anxiety & stress (Prashanth & Venugopalachar, 2010). (Braithwaite, 2006), who also have researched infrasonic resonance, cite that the change to fearful emotions may be a direct response to infrasound inducing resonance within the human eyeball. To support this statement, it’s also apparent within research conducted by NASA (Aerospace Medical Research Laboratory, 1976) that the resonant frequency of the human eyeball sits at around 18hertz, just below the audible range of the human ear. Referring back to the use of 7Hz frequency, additional support is gathered with many texts referring to resonant frequencies within the body, with the likes of (Broner, 2003) stating “…it has also been alleged that this is the resonant frequency of the body’s organs…”. One could perhaps draw a conclusion that resonance could be the catalyst for psychological change when exposed to infrasonic sound. The result of resonant frequencies within the body allow for a direct correspondence to the frequency rhythms within the brain, which cohere with the emotional state of every human. (Davies & Honours, no date) cites that “Many of the most profound effects of sound are attributed to infrasound in the region of 7Hz. This corresponds with the median alpha-rhythm frequencies of the brain.”. In addition to this, we also see discussed by (Sargeant, 2001):

“The frequency that is thought to be most dangerous to humans is between 7 and 8Hz. This is the resonant frequency of flesh and, theoretically, it can rupture internal organs if loud enough. Seven hertz is also the average frequency of the brain’s alpha rhythms; thus this frequency has been described as dangerous but also relaxing. Whether exposure to such infrasound can trigger epileptic seizures, as some fear, remains unclear; experimental data on exposure to such frequencies gives a variety of results. It should be noted, however, that the strobe light effect associated with triggering epileptic seizures flashes at an equivalent rhythm. Frequencies below 50Hz commonly lose their coherence and are perceived to pulse or fluctuate, which is analogous to the strobing beat of a modulated light.”

It is apparent that the frequency range sitting around 7Hz has been widely discussed as changing a subject emotional state when exposed. As a result of this research, the study will gather primary research to understand the effect of 7Hz on the human body, and analyse the emotional effect it has within formulated within this study.

Sonic Frequencies

The frequency that forms our own perception of sound sits between 20Hz — 20,000Hz, though only constituting a small amount of frequency spectrum, our auditory range can play an important role on our body; such as our equilibrioception (balance), proprioception and kinaesthesia (joint motion and acceleration), time, nociception (pain), magnetoception (direction), and thermoception (temperature differences) (HEYS, 2011). In order to full understand how the military application of sound can impact subjects psychologically, we must first understand how sound effects us mentally. Drawing from research collated pioneers within the sound-emotion connection, (Berlyne, 1971), (Meyer & Meyer, 1961), (Juslin & Sloboda, 2001) & (Liljeström, 2011) suggest six main mechanisms that happen when we perceive sound:

  • Brain Stem Reflex is the effect of the brain recognising the acoustic properties of a sound, signalling the brain to react instinctively. Much similar to that of the American ‘Long Range Acoustic Device’ discussed later within this section.
  • Evaluative conditioning is the effect of association between setting and sound; if the brain has heard a specific sound repeatedly in a specific setting, this triggers an emotional connection between the two.
  • Emotional contagion is the perception of emotion expressed in certain sounds, whether or not the audio sounds sad, the association is recognised by the brain as an expression of emotion.
  • Visual imagery relates to the brains association between a certain sound and a visual image or sensation.
  • Episodic memory is the effect of the brain recognising sound as a memory, evoking the thought of stations to which a memory of sound was present.
  • Sound expectancy is the brains mechanism of expecting how a sound will hear through previous experience.
  • It is these mechanisms within the brain that aid us to draw the association between techniques developed for military application and sound in order to alter the state of mind of subjects. Whether it is by creating resonance within the brain or allowing for association between a sound and setting, many key pieces of research provide insight into the use of these techniques. It is with these mechanisms that we can gain an understanding as to why audible sound can effect our mental state.

Psychological Effects

The use of sound within our auditory range has been used to effect targets negatively from the mid-1900s. After analysing previously explored research within this field, a large amount of research refers to the United State’s military and their Psychological Operations Units (PsyOps) (United States Military, 1996). In many cases, we see the application of sound utilised in order to effect the six mechanisms discussed in chapter 3.2, allowing them to apply the use of sound for non-lethal warfare. As early as World War 2, we see strong evidence for the the deployment of sound, used in order to effect the psychology of enemies. The U.S militaries 23rd Special Troops, often referred to as the ‘Ghost Army’ were a troop of sound and radio engineers assigned to fabricate the sounds of marching troops, tanks, landing crafts allowing for sonic deception of their enemies (Goodman, 2009, p. 41). This perhaps was a result of that described in Philip Gerard’s book Secret Soldiers: How a Troupe of American Artists, Designers and Sonic Wizards Won World War II’s Battles of Deception Against the Germans:

“…screaming whine caused by a siren deliberately designed into the aircraft…it instilled a paralysing panic in those on the ground…For Division 17 of the National Research Defence Committee, the lesson was clear: sound could terrify soldiers…So they decided to take the concept to the next level and develop a sonic ‘bomb’…The idea of a sonic ‘bomb’ never quite panned out, so the engineers shifted their work toward battlefield deception.” (Gerard, 2002)

It is these tactics and technologies used within the early years of the military’s application of sound that allow for a greater insight into their usages. We also see many deployments of sonic frequencies, used in order to impact subjects negatively in varied military approaches such as interrogation, crowd control and creating fear against enemies. (BBC, 2003) cites the U.S’s PsyOps use of heavy metal and children’s music as a means of interrogation during warfare. Sergeant Mark Hadsell of PsyOps states “If you play it for 24 hours, your brain and body functions start to slide, your train of thought slows down and your will is broken. That’s when we come in and talk to them.” (BBC, 2003). However, though it is well documented that music and sound has been used within interrogation scenarios, this perhaps does not allow us to have an understanding of how sound effects our brain, as one can associate it’s effect as more physiological, due to sensory depravation caused, as a pose to psychological change. Psychological change, can infect be seen within the second Indochina war, similar to operations such as the Urban Funk Campaign discussed in section 3.1. Known as the “Wandering Soul” PsyOps units within the war attempted to exploit emotional contagion, evaluative conditioning and visual imagery of the enemy. John Pilger describes this within his book Heroes when discussing a PsyOps Officer in Vietnam:

“His favourite tape was called “Wandering Soul,” and as we lifted out of Snuffy he explained, “what we’re doing today is psyching out the enemy. And that’s where Wandering Soul comes in. Now you’ve got to understand the Vietnamese way of life to realise the power behind Wandering Soul. You see, the Vietnamese people worship their ancestors and they take a lot of notice of the spirits and stuff like that. Well, what we’re going to do here is broadcast the voices of the ancestors — you know, ghosts which we’ve simulated in our studios. These ghosts, these ancestors, are going to tell the Vietcong to stop messing with the people’s right to live freely, or the people are going to disown them.” The helicopter dropped to within twenty feet of the trees. The PsyOps captain threw a switch and a voice reverberated from two loudspeakers attached to the machine- gun mounting. While the voice hissed and hooted, a sergeant hurled out handfuls of leaflets which made the same threats in writing.” (Pilger, 1986).

These techniques have allowed for a greater amount of research in the 21st century, and as a common theme, this is particularly within the U.S military. In February 2004, the American Technology Corporation secured a $1 million contract to provide U.S forces in Iraq with Long Range Acoustic Devices (LRAD) (Goodman, 2009, p. 21). The LRAD focuses a directional 15° to 30° beam of sound between 1kHz and 5kHz reaching a distance of around 5,500 meters (LRAD , 2015). The use of the LRAD has been seen as a means of crowd control and has been identified in scenarios such as repelling pirates in Somalia and suicide bombers in the middle east (Goodman, 2009). It is the LRAD’s highly directional and high decibel sound that perhaps allows us to see the effect of the Brain Stem Reflex discussed in section 3.1. The impact of such a high decibel frequency could perhaps be believed to instil a natural instinctive flight mechanism in the brain; it is also document that the effect of the LRAD can cause nausea or dizziness, Amy Teibel writes, when discussing the Israeli use of a similar LRAD device

“A young Palestinian covers his ears from a sound, launched by a new weapon of the Israeli army, during a demonstration against the construction of Israel’s separation barrier at the West Bank village of Bil’in Friday, June 3, 2005. Israel is considering using an unusual new weapon against Jewish settlers who resist this summer’s Gaza Strip evacuation, a device that emits penetrating bursts of sound that send targets reeling with dizziness and nausea.” (Teibel, 2005).

However, when discussing the LRAD device we must also consider it’s use of ultrasound, as this device also applies ultrasound within it’s mechanism — this will be discussed in section 4.3.1. It is clear to see that the effect of sonic weapons used in order to impact the human body physiologically and alter the subjects mental state, is of large importance when researching acoustic warfare weapons.

Brainwave Entrainment

The effect of sound on our brain often leads back to a common theme of resonance. Brainwave entrainment (or often referred to as neural entrainment) defines itself as the use of certain frequencies to activate bands of electrical wave resonance within our brain, to induce neurological states within our body. The preliminary proof of concept and main body of contextual research in this field stems from German professor of Physics, Heinrich Wilhelm Dove, who made discoveries in brainwave entrainment (BWE) through infrasonic frequencies entitled “Binaural beats” in 1841 (Kliempt, Ruta, Ogston, Landeck, & Martay, 1999). This method of entrainment occurs when two coherent frequencies within our audible range, are made present in both the left and right ear. Each frequency enters the auditory canal of the ear through to the cochlea; in turn the basilar membrane resonates at the frequency heard, this passes to the brain allowing us to recognise the frequency (Cook, 1999). The effect of this allows the brain to detect the phase difference between the two frequencies, rather than the brain responding to each frequency, the effect comprises of the difference between the two. This instils the ‘third’ frequency to resonate at an infrasonic range below 20–30Hz. The stimulus frequency reverberated by this induces a specific cerebral wave corresponding to characterised states of mind. (Caterina Filimon, n.d). Goodman states “…resonating with alpha and theta rhythms in the brain known to produce moods of fear, anxiety or anger” (Goodman, 2009, p. 18).

This technique has been applied to many non-warfare scenarios, which allows us to understand the importance of it’s application. Many musicians and directors have found ways of utilising neural entrainment to initiate fear into the listeners. Movie Director Gaspar Noe and musician Thomas Bangalter, used two differing bandwidths to instil beta wave frequency to the audience in order to create a feeling of tension in particular scenes of the movie Irreversible (Stathatos, no date).

Articles posted in The Times & New Scientist in 1973 document the use of a device called a ‘Squawk Box’ (New Scientist, 1973), used by the British Military in Northern Ireland. The device, mounted on a vehicle, emitted two frequencies of marginal difference in order to resonate a particular frequency bandwidth, similar to the effect discussed previously (Spannered, 2009). The article in New Scientist reports that the audio produced psychoacoustic effects giddiness, nausea, fainting, or merely a “spooky” psychological effect to targets. It also goes on to say that “Most people are intensely annoyed by the device and have a compelling wish to be somewhere else.” (New Scientist, 1973). Though the exact frequency range that was created is discussed in many aspects of military application, it’s important to draw from research to discover which areas of brainwave entrainment may perhaps effect the human body negatively.

Contrary to that described previously, the use of binaural beats has been actively discussed as a means of stress relief for participants, with research such as that collated by (Huang & Charyton, 2008) citing “People suffering from cognitive functioning deficits, stress, pain, headache/migraines, PMS, and behavioural problems benefited from BWE. However, more controlled trials are needed to test additional protocols with outcomes.” It is in review of physiological effects of brainwave entrainment we see in many pieces of research and literature such as that by, (Wahbeh, Calabrese, & Zwickey, 2007) & (Huang & Charyton, 2008), that confirm increased Serotonin levels within the body due to brainwave entrainment. With research such as (Mercola, 2015), discussing the role of increased Serotonin levels positively effecting the feeling of anxiety, that perhaps one may see the benefits of BWE. However, it is in fact discussed by (L. Fannin, Ph.D, no date) that the effect of BWE on frequency ranges that are already heightened within our brain is what causes a negative effect. Jeffrey L. Fannin, Ph.D, discusses:

“Anxiety — Too much beta activity may cause you to feel afraid or have thoughts of fear towards things that you are usually calm. I would imagine that if your brainwaves get high enough in the beta range, you will begin to notice a fear of things that are not normal to freak out over.

Stress — Though there are many good things that come with beta waves, there is also a huge possibility that they may stress you out. They are linked to increased stress, which is why it is important to learn how to shift your brainwaves when needed.

Paranoia — Paranoid schizophrenics are actually able to generate much more high beta (25–30Hz) activity than the average population. Are beta brainwaves the cause of schizophrenia? No, they are a side-effect and schizophrenia is a much more complex disease. Increasing beta brainwaves will not increase the likelihood of you becoming crazy, but they could make you feel more paranoid than usual.”

Ultrasonic frequencies

The spectrum beyond human audible range defines itself as ultrasound, this being above 20,000Hz. Ultrasound maintains very directional wave forms, due to their smaller wavelength and is very easily absorbed by materials, which allows for a greater application of use than other frequency bandwidths (Carovac, Smajlovic, & Junuzovic, 2011). Due to this, we can see ultrasound utilised in largely in the medical industry, with a particular focus on digital diagnostic imaging. Diagnostic imaging of ultrasound scanners operate around 2 to 18 megahertz, being hundreds of times greater than human perception (Carovac, Smajlovic, & Junuzovic, 2011). The mechanisms for this process depends on the echo time or Doppler shift, of the reflected ultrasonic sound on the internal organs or soft tissue, thus resulting in a 2d or 3d image (Georgia State University, no date). Ultrasonic sound is often produced using either piezoelectric or magnetostrictive transistors, by applying the output of an electronic oscillation within the device (Georgia State University, no date). The preliminary applications of ultrasound can be seen as a means of radar detection, similar to that of infrasound discussed in section 3.1, with the employment of submarine detectors in World War 1 (Carovac, Smajlovic, & Junuzovic, 2011). This depended on similar technologies of that used today in the medical industry, however since then, we have seen research within ultrasonic frequencies rise in many differing fields. Though it is apparent that the use of ultrasound has not been as widely investigated as both the infrasonic and sonic frequency fields, we can still see a common interest in it’s application for military use.

 

Hypersonic Ultrasound

‘Hypersonic sound’ can be referred to simply as the focusing of ultrasound. Similar to that of light being focused into a laser, hypersonic sound works under a similar principle, with a speaker being focused into a highly directional focused beam of sound. The effect of this involves a speaker which emits low level ultrasound at around 100,000 vibrations per second, resulting in the audio creating the sound in the air as it travels, as a pose to regular speakers which make the sound waves on the face of the speaker (Norris, 2004). However, as previously mentioned in section 3.2.2, hypersonic sound used in devices like the LRAD do in fact utilise audible frequencies too and it is important to understand the cohesion within it’s application.

The military usage of hypersonic ultrasound is perhaps a technical advancement of the acoustic deception techniques used in World War II by the ‘Ghost Army’ and that of the Urban Funk Campaign in Vietnam both discussed in section 3.2.2. However, what these to techniques did not allow for was the development ultrasound, resulting in the audio being highly directional. Woody Norris, who would later found the LRAD Corporation, discussed the military application of ultrasound on a hypersonic sound lecture in 2004. Stating that the device had been deployed by the U.S military for use within Iraq, in order to deceive the enemy by creating the sound ‘fake’ troops. Moreover, he also discussed the use of the device that altered temperature of enemies whilst also stating:

“We make a version with this which puts out 155 decibels. Pain is 120. So it allows you to go nearly a mile away and communicate with people, and there can be a public beach just off to the side, and they don’t even know it’s turned on. We sell those to the military presently for about 70,000 dollars, and they’re buying them as fast as we can make them.” (Norris, 2004).

This in fact, gives us a great insight into the development of techniques used within prior wars and the advancement that has been made with technology of those discussed in previous sections. We can also see from this that the application of ultrasound has in fact been popular by the military and one could assume that there may be more progressed development within this field. Moreover, (Goodman, 2009) cites “There is, however, evidence to suggest that ultrasound has been considered by military and law enforcement authorities as a likely technology for so-called ‘non-lethal weapons’ for use in crowd control and ‘coercive interrogation’.” which is evident to this day. We can also see the application of hypersonic ultrasound as a means of public crowd control with the likes of The Mosquito Anti-Social Device (M.A.D), which emits high frequency sound, around 20,000hz and above, with a range of around 15 to 20 meters (Goodman, 2009). On the Compound Security System’s website, who are the company behind the M.A.D, they specify that the sine wave frequency played by the device, at 20kHz, can only be heard by those under 25 years of age (Compound Security, 2015). Thus, this system is targeted as a youth deterrent. The company goes on to state that field trials suggest that teenagers where acutely aware for the ultrasonic tone and would usually wish to move away after around ten minutes (Compound Security, 2015). This suggest that perhaps the device’s intended use is to create auditory discomfort for the target audience, in order for them to move away from a specific area. Moreover, devices similar to this have also been developed previously; though military and law enforcement have denied the use of ultrasonic devices it apparent that such exist. Instructions and a Patent for a ‘Phasor Pain Field Generator’ can be found, which emits ultrasonic frequencies at 20,000Hz to 25,000Hz as a schematic for a handheld self-defence device, specifying that it’s “intended for Law Enforcement, Personal Or For Qualified Acoustical Research” (Free Information Society, no date) & (De Laro Research, 2014). Within the description of this device, it also states “if at any time head or neck feels swollen or you feel light headed or sick to your stomach, it is an indication that you are being affected. Sometimes you may experience a continuous ringing in the ears even after the device is turned off” (Free Information Society, no date). One can draw a conclusion from the description of both the M.A.D and the ‘Phasor Pain Field Generator’ that the intended outcome if the the target to feel discomfort. It is not unreasonable to state that as technology has progressed within ultrasonic research and as more psychological effects of inaudible sounds are discovered, the perceptual military operations of sonic warfare have widened. These techniques of applying 20,000Hz as a means of deterrent of said ‘self-defence’ devices allow for more primary research within this field to be explored. As a result, this study will collect primary research within this area to allow for a greater insight into the application of these techniques.

Sources:


Aerospace Medical Research Laboratory. (1976). Mechanical resonant frequency of the human eye ‘in vivo’”. Retrieved from https://archive.org/stream/DTIC_ADA030476/ DTIC_ADA030476_djvu.txt

BBC. (2003) Sesame Street breaks Iraqi POWs. BBC Middle East, Retrieved from http:// news.bbc.co.uk/1/hi/world/middle_east/3042907.stm

Bahaistudies. (n.d.). Binaural Beats. Retrieved from http://www.bahaistudies.net/asma/ binaural.pdf

Berlyne, D. E. (1971). Aesthetics and psychobiology. New York: Meredith

Braithwaite, D. (2006). Good vibrations: The case for a specific effect of Infrasound in instances of anomalous experience has yet to be empirically demonstrated. Retrieved from http://www.academia.edu/1191555/ Good_Vibrations_The_Case_for_a_Specific_Effect_of_Infrasound_in_Instances_of_Anom alous_Experience_has_Yet_to_be_Empirically_Demonstrated

Broner, N. (2003). The effects of low frequency noise on people. Journal of Sound and Vibration. Retrieved from http://waubrafoundation.org.au/wp-content/uploads/2015/02/ Broner-The-effects-of-low-frequency-noise-on-people.pdf

Carovac, A., Smajlovic, F., & Junuzovic, D. (2011). Application of ultrasound in medicine. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564184/

Caterina Filimon, R. (n.d.). Beneficial Subliminal Music: Binaural Beats, Hemi-Sync and Metamusic. Department of Composition and Musicology University of Arts, University of Arts George Enescu, 1790–5095, 104–105

Compound Security. (2015). The mosquito MK4 anti-loitering device. Retrieved from http:// www.compoundsecurity.co.uk/security-equipment-mosquito-mk4-anti-loitering-device

Cook, P. R. (Ed.) (1999). Music, cognition, and computerized sound: an introduction to psychoacoustics (1st ed.). Cambridge, MA: The MIT Press

Crab, S. (2008). A short history of sound weapons: infrasound. Retrieved from https:// crab.wordpress.com/2008/01/14/a-short-history-of-sound-weapons-pt2-infrasound/

Davies, A. & Honours, B. (n.d.). Acoustic trauma: Bioeffects of sound. Retrieved from http://schizophonia.com/wp-content/uploads/2015/01/Alex_Davies_Acoustic_Trauma.pdf

De Laro Research. (2014). Ultrasonic Phaser Pain Field Generator. Retrieved from http:// delarosaresearch.com/uploads/ Ultrasonic_Phaser_Pain_Field_Generator_users_manual.pdf

ECRIP. (2008). Infrasound. Retrieved from http://www.eastcoastrip.org/did-you-know/ infrasound

E. Simon, L. (1971). Secret Weapons of the Third Reich: German Research in World War II

Fahy, F. & Walker, J. (Eds.) (2004). Advanced applications in acoustics, noise, and vibration (1st ed.). New York: Taylor & Francis

Free Information Society. (n.d.). Phasor Pain Field Generator. Retrieved from http:// www.freeinfosociety.com/electronics/schematics/weaponry/painfieldgenerator.pdf

French, C. C., Haque, U., Bunton-Stasyshyn, R., & Davis, R. (2009). The haunt’’ project: An attempt to build a haunted’’ room by manipulating complex electromagnetic fields and infrasound. Cortex. Retrieved from http://www.each.usp.br/rvicente/HauntProject.pdf

Georgia State University. (n.d.). Ultrasonic Sound. Retrieved from http://hyperphysics.phy- astr.gsu.edu/hbase/sound/usound.html

Georgia State University. (n.d.). Infrasonic Sound Retrieved from http://hyperphysics.phy- astr.gsu.edu/hbase/sound/infrasound.html

Gerard, P. (2002). Secret Soldiers: How a Troupe of American Artists, Designers and Sonic Wizards Won World War II’s Battles of Deception Against the Germans (1st ed.)

Giordano, J. (Ed.) (2014). Neurotechnology in national security and defense: Practical considerations, Neuroethical concerns. United Kingdom: CRC Press

Goodman, S. (2010). Sonic Warfare: Sound, Affect, and the Ecology of Fear. Cambridge, MA: MIT Press

HEYS, T. (2011). Sonic, Infrasonic, and Ultrasonic Frequencies: The utilisation of waveforms as weapons, apparatus for psychological manipulation, and as instruments of physiological influence by industrial, entertainment, and military Organisations.

Harding, G. W., Bohne, B. A., Lee, S. C., & Salt, A. N. (2007). Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise. Hearing Research. Retrieved from http://www.sciencedirect.com/science/article/pii/S0378595507000329

Howard, D. M. & Angus, J. A. S. (2009). Acoustics and Psychoacoustics (4th ed). Amsterdam: Elsevier Science

Huang, T. & Charyton, C. (2008). A comprehensive review of the psychological effects of brainwave entrainment. Alternative therapies in health and medicine. Retrieved from http:// www.ncbi.nlm.nih.gov/pubmed/18780583

Ihde, D. (2015). Acoustic Technics. United States: Lexington Books
Illingworth, E. (2012). Sonic Warfare and Music both Exploit the Negative Effects of

Sound. What are the Similarities — if any — between these two Distant Practices?

Juslin, P. & Sloboda, J. A. (Eds.) (2001). Music and emotion: Theory and research. New York: Oxford University Press

Kliempt, P., Ruta, D., Ogston, S., Landeck, A., & Martay, K. (1999). Hemispheric- synchronisation during anaesthesia: A double-blind randomised trial using audiotapes for intra-operative nociception control. Anaesthesia. Retrieved from http:// www.ncbi.nlm.nih.gov/pubmed/10460529

L. Fannin, Ph.D, J. (n.d.). Understanding Your Brainwaves. Retrieved from http:// drjoedispenza.com/files/understanding-brainwaves_white_paper.pdf

LRAD . (2015). Fact sheet — LRAD corporation. Retrieved from http://www.lradx.com/about/ lrad-public-safety-applications-fact-sheet/

Levitin, D. J. (2007). This Is Your Brain on Music: The Science of a Human Obsession. United States: New American Library

Liljeström, S. (2011). Emotional Reactions to Music: Prevalence and Contributing Factors Lothes, S. (2004). Acoustic noise. Retrieved from http://www.zemos98.org/controlsonoro/wp-content/uploads/pdf/acoustic_noise_Roman_Vinour.pdf

Mackinlay, C. (n.d.). Beta brain waves: 12 Hz to 40 Hz. Retrieved from http:// mentalhealthdaily.com/2014/04/10/beta-brain-waves-12-hz-to-40-hz/

Mercola. (2015) Social anxiety disorder linked to high serotonin levels. Retrieved from http://articles.mercola.com/sites/articles/archive/2015/07/02/social-anxiety-disorder.aspx

Meyer, L. B. & Meyer, D. J. (1961). Emotion and meaning in music. Chicago, IL: University of Chicago Press

New Scientist. (1973). New Scientist, September Issue. Reed Business Information Norris, W. (2004). Hypersonic Sound and other inventions (Lecture). Retrieved from https://www.ted.com/talks/woody_norris_invents_amazing_things?language=en

Pellegrino, R. & Productions, E. A. (1996). Sound deserves its own pollution category. Retrieved from http://www.ronpellegrinoselectronicartsproductions.org/Pages/ NsNSndPltnFndmntPrncpls.html/SndDsrvsOwnPltnCtgry.html

Pilger, J. (1986). Heroes. Random House.

Prashanth, M. & Venugopalachar, S. (2010). The possible influence of noise frequency components on the health of exposed industrial workers. Noise & health. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21173483

Salt, A. N. & Hullar, T. E. (2010). Responses of the ear to low frequency sounds, infrasound and wind turbines. Hearing Research. Retrieved from http:// www.sciencedirect.com/science/article/pii/S0378595510003126

Sargeant, J. (2001). Sonic Boom. Retrieved from http://www.zemos98.org/controlsonoro/ 2008/03/08/sonic-doom-by-jack-sargeant/

Scott, R. L. & Monitor, T. C. S. (2010) War without death? How non-lethal weapons could change warfare. Retrieved from http://www.csmonitor.com/Commentary/Opinion/ 2010/0311/War-without-death-How-non-lethal-weapons-could-change-warfare

Spannered. (2009). A brief history of sonic warfare. Retrieved from http:// www.spannered.org/features/806/

Stathatos, S. (n.d.). Sounds in Silence: Infrasound and Resonance
Teibel, A. (2005). Israel may use sound weapon on settlers. Retrieved from http://

www.freerepublic.com/focus/news/1420380/posts
Toffler, A., Alvin, & Toffler, H. (1995). War and anti-war: Making sense of today’s global

chaos. London: Time Warner Paperbacks
United States Military. (1996). Doctrine for Joint Psychological Operations. Retrieved from http://www.iwar.org.uk/psyops/resources/us/jp3_53.pdf

Vassiltos, G. (n.d.). ‘The Sonic Doom of Vladimir Gavreau’ by Gerry Vassilatos. Retrieved from https://borderlandsciences.org/journal/vol/52/n04/ Vassilatos_on_Vladimir_Gavreau.html

Vinokur, R. (1993). The Case of the Mythical Beast. USA: Quantum

Wahbeh, H., Calabrese, C., & Zwickey, H. (2007). Binaural beat technology in humans: A pilot study to assess Psychologic and physiologic effects. The Journal of Alternative and Complementary Medicine

Walonick, D. S. (1990). Journal of Borderland Research. Retrieved from https:// borderlandsciences.org/journal/vol/46/n03–4/ Walonick_Effects_6–10hz_ELF_on_Brain_Waves.html

(This article is part of the paper ‘The psychoacoustic effect of infrasonic, sonic and ultrasonic frequencies within non-lethal military warfare techniques’ by Ryan Littlefield, copywrite of The University of Portsmouth)

Remote Control of the Brain and Human Nervous System

Remote Control of the Brain and Human Nervous System

The USA and the European Union invest since the beginning of the millenium billions of dollars and euros into brain research. As a result of this research perfect maps of the brain were developed, including the areas of the brain that control the activity of different body organs or parts where higher brain activities, such as speech and thoughts, are taking place. The brain activities corresponding to different actions in those areas were also deciphered.

Thanks to the knowledge of specific locations of different centers in the brain and frequencies of the neuronal activity in them, teams of physicians are now capable of helping many people who were in the past, for different reasons, unable to participate in a normal life. There exist prostheses, which are controlled directly from the brain centers that normally control the movement of the limbs (see this) and enable people, who lost them, to use the prosthesis in a way similar to the way normal people use their limbs. Higher brain activities were produced as well. In 2006 scientists placed into the brain of a completely paralyzed man an implant, which transferred the activity of his brain into different devices and enabled him to open his e-mail, control his TV set and control his robotic arm. Other paralyzed people were able to search the Internet, play computer games and drive their electrical wheelchairs (see this).

Thanks to extensive brain research, computers were taught to understand the neuronal activity so much so that they are now capable of using the activity of our brain to reproduce our perceptions. Canadian scientists demonstrated an experiment, where the computer could interpret the electroencephalographical recordings from the brain to produce the painting of a face that the subject of experiment was perceiving (see this).

In the opposite way the data, processed by the computer in the way that will make them intelligible for the nervous system, can be transmitted into the brain and produce there a new reality. When an implant is placed in the brain and connected to a camera, placed on spectacles, for people whose photoreceptors in their retina stopped working, the sight is at least partially restored. In this case the camera on the spectacles is transmitting into the implant light frequencies and the implant re-transmits them in frequencies which “understand” the neurons processing the visual perceptions (see this).

In California scientists developed a device, which can register the brain waves and, using analysis, find among them consonants and vowels and in this way transform our thoughts to words. A paralyzed man could use this device to write without using a keyboard. Presently the accuracy of the device reaches 90%.  Scientists believe that within five years they will manage to develop a smartphone, to which their device could be connected (see this).

Just like in the case of visual perception it is possible, when knowing the algorithms of brain processing of words, to generate algorithms of different words in the computer and transmit them into the brain in ultrasound frequencies and in this way produce in the human brain particular “thoughts”.

Everybody will easily fall victim to the proposal that, instead of typing or searching with the use of mouse, his computer or cell phone could react directly to his brain’s activity and take down his thoughts directly to the documents or carry out operations that has just occurred to him.

As a matter of fact Apple and Samsung companies have already developed prototypes of necessary electroencephalographical equipment, which can be placed on top of a head and transmit electromagnetic waves produced by the brain into the prototypes of new smart phones. The smart phones should analyze those waves, find out what are the intentions of their owners and carry them out. Apple and Samsung companies expect that the direct connection with brains will gradually replace computer keyboards, touch screens, mouse and voice orders (see this). When the system is complete, it will be feasible for hackers, government agencies and foreign government’s agencies to implant thoughts and emotions in people’s minds and “hearts“, when they will be connected to internet or cell phone systems.

In 2013 scientists in the USA could infer from the brain activity the political views of people and distinguish democrats from republicans and in 2016 scientists used transcranial magnetic stimulation to make subjects of experiment more positive towards criticism to their country, than the participants whose brains were unaffected (see this).

Last year historian Juval Noah Harari was invited to deliver a speech at the World economic Forum in Davos. The editor of the British daily Financial Times stressed, when introducing him, that it is not usual to invite a historian to speak to most important world economists and politicians. Juval Noah Harari warned in his speech against the rise of new totality, based on the access to human brain. He said:

“Once we have algorithms that can understand you better than you understand yourself, they could predict my desires, manipulate my feelings and even make decisions on my behalf. And if we are not careful the outcome can be the rise of digital dictatorships. In the 21st century we may be enslaved under digital dictatorships”

In a similar way the Stanford University researcher in neurology and Dolby Labs’ chief scientist Poppy Crum warned at the conference in Las Vegas:

“Your devices will know more about you than you will. I believe we need to think about how [this data] could be used“.

In April 2017 neuroethicist at the University of Basel Marcello Ienca and Roberto Andorno, a human rights lawyer at the University of Zurich, writing in the journal Life Sciences, Society and Policy, published the article “Toward new human rights in the age of neuroscience and neurotechnology“ where they called for the creation of legislation which would protect human right to freedom and other human rights from the abuse of technologies opening access to the human brain. In the article they wrote that “the mind is a kind of last refuge of personal freedom and self-determination” and “at present, no specific legal or technical safeguard protects brain data from being subject to the same data-mining and privacy intruding measures as other types of information“. Among the world media only the British newspaper The Guardian wrote about their proposal (see this). This fact suggests that in the actual democratic world there exists no political will to forbid remote control of human thoughts and feelings, no matter that such perspective breaks elementary principles of democracy.

In 2016 and 2017 10 European organizations tried to convince the European Parliament and the European Commission to enact the legislation that would ban the remote control of activity of the human nervous system, since pulsed microwaves could be used to manipulate the human nervous system at a distance at present time already (see this). Then in 2017, 19 world organizations addressed the G20 meeting with the same proposal. They received no positive response to their effort.

To achieve the ban of the use of remote mind control technologies it is necessary to work out an international agreement. In the past century the USA and Russia built systems (HAARP and Sura), capable to produce, by manipulation of the ionosphere, extra long electromagnetic waves in frequencies corresponding to frequencies of the activity of the human nervous system and in this way to control the brain activity of populations of vast areas of this planet (See this, “Psychoelectronic Threat to Democracy“). At the beginning of this year China announced the building of a similar, more advanced, system. The Chinese daily The South China Morning Post admitted in its article that the system could be used to control the activity of the human nervous system.

The politicians should, instead of classifying those weapons of mass destruction, make effort to create more democratic system of international politics to replace the current system of struggle for military power. Only in this way conditions could be provided for the ban of use of   If this does not happen, in a few years there will be no chance to preserve democracy.

By Mojmir Babacek

Mojmir Babacek is the founder of the International Movement for the Ban of the Manipulation of the Human Nervous System by Technical Means,  He is the author of numerous articles on the issue of mind manipulation. 

Mind Control? Scientists Have Discovered How To Use Nanoparticles To Remotely Control Behavior!

Mind Control? Scientists Have Discovered How To Use Nanoparticles To Remotely Control Behavior!

By Michael Snyder, on July 8th, 2010
mind control

We are moving into a time when the extraordinary advances that have been made in the fields of nanotechnology, neurology, psychology, computer science, telecommunications and artificial intelligence will be used by governmental authorities to control the population?  Already, governments around the world are using the threat of “terror” as an excuse to watch us, track us, scan all of our electronic communications and force us to endure “security measures” that are so extreme that even George Orwell could have never dreamed them up.   So what is going to happen one day when some crazed individual actually does set off a weapon of mass destruction in a major city?  The temptation to use these emerging technologies to control the public will become almost irresistible.  At this point “mind control” is still a dirty word to many, but after the next couple of “9/11 style events” the general population will be crying out for something to be done to ensure their security.  When society experiences a complete and total meltdown in the years ahead, governments around the world will be tempted to do just about anything, including using mind control, to restore order.  That is why some of the most recent advances in the field on nanotechnology are so chilling.

In particular, what a team of researchers at the University at Buffalo have discovered is truly alarming.  The following is an excerpt from their recent news release….

Clusters of heated, magnetic nanoparticles targeted to cell membranes can remotely control ion channels, neurons and even animal behavior, according to a paper published by University at Buffalo physicists in Nature Nanotechnology.

Using nanoparticles to remotely control animal behavior?

It doesn’t take a doctorate to understand the implications of such a technology.

What if “nanobots” that had the capacity to control human minds were programmed to search out and attach themselves to key areas of the human brain?

Such “nanobots” would be far too small to even be seen by the human eye, and people could become “infected” with these creatures without even knowing it.

Hordes of these nanobots could be released into the atmosphere or in public areas and infect thousands (or even millions) and nobody might even realize it.

If governments could find a way to use nanobots to remotely control the minds of the general population, a mass mind control program could be implemented without the general public even realizing what is going on.

Yes, this is just how scary this technology is.

But it gets even worse.

mind

You see, when it comes to nanotechnology we are dealing with something far more dangerous than we can even imagine.

For example, if something goes horribly wrong and we develop speed-breeding self-assembling nanobots that get out of control, they could theoretically devour all life on Earth in fairly short order.

Think of the scene at the end of the recent Keanu Reeves movie entitled “The Day The Earth Stood Still” and multiply it by about a million.

But even if such a scenario never plays out, the mind control potential of nanotechnology is bad enough.

Not that other mind control technologies aren’t equally as dangerous.

The truth is that all kinds of mind control technologies are being developed.

Video game makers are busy developing games that you control not with a joystick or a gamepad but rather with your brain waves.  So could such a technology someday be used in reverse?

Of course most people by now have heard of  MK-ULTRA and other mind control programs that were developed by the CIA and other U.S. government agencies.

The U.S. government insists that all such programs have been discontinued.

But are they telling the truth?

And what are other governments around the world developing in secret?

There are other mind control technologies out there that are incredibly dangerous as well.

In fact, there are many who suggest that electromagnetic waves could potentially be used to control thoughts and influence behavior.  Think of what just one terrorist could do with such technology.

But one of the most disturbing developments of all is the increasingly rapid merger of men and machines that is now taking place.

People have been looking for ways to stay more “connected” to the Internet for a long time, and now some are actually suggesting that we should find a way to directly connect our brains to the Internet.  A recent article on the website of the Science Channel put it this way….

What if it were possible to connect your brain to the Internet, either wirelessly or through a cable, download digital information at high speed, and then translate it automatically into a chemical form that could be stored by your brain cells as memory?

The same article explained what some of the benefits from such a connection might be….

If you could pump data directly into your gray matter at, say, 50 mbps — the top speed offered by one major U.S. internet service provider — you’d be able to read a 500-page book in just under two-tenths of a second.

But what about the dangers?

What if the Internet could end up controlling you?

Or what if a really bad computer virus was downloaded into your brain?

Think it can’t happen?

nsa

Well, British researcher Mark Gasson infected an RFID chip in his hand with a computer virus and found that the virus-infected chip implanted in his hand was able to contaminate external systems.

Imagine if that started happening on a large scale.

Especially as we approach the time that futurists refer to as “The Singularity”.

The Singularity is hard to define, but basically many futurists believe that the merging of man and technology is happening at such an increasingly rapid pace that at some point the new “transhumans” will become virtually incomprehensible to normal human beings.  The idea is that by merging man and machines, transhumans will become smarter, stronger, healthier and more powerful than we could have ever dreamed possible.

So will men and computers fully merge someday?

Let’s hope not.

But even now, an increasing number of people are developing ways to tag humans with RFID microchips.

In fact, one company called Somark has developed a breakthrough in chipless RFID ink.  Their “RFID tattoos” are applied using a geometric array of micro-needles and a reusable applicator with a one-time-use ink capsule.

So how easy is it to apply one of these RFID tattoos?

Well, it takes about 5 to 10 seconds to tattoo an animal or a human.  Once the tattoo has been applied, an RFID reader can read it from up to four feet away.

But who needs a tattoo?  IBM has actually announced that they have developed a “bar code reader” that can read your DNA.

Very frightening stuff.

The truth is that the vast majority of people do not want their DNA scanned and they do not want RFID chips implanted into them.

But RFID chips are being implanted into people more than ever before.

The reality is that microchipping of humans is becoming quite commonplace in the United States.  For example, RFID implants are being implanted in thousands of elderly Americans living with Alzheimer’s disease who are at risk of wandering off and getting lost.  In addition, RFID chips are being implanted into many people who are chronically ill so that doctors can access their medical information quickly in an emergency.

The truth is that there are some people who are quite eager to be chipped.  One columnist named Don Tennant recently published an article entitled “Chip Me – Please!” in which he expressed his excitement that Barack Obama’s new health law may include coverage for RFID chip implants that contain patient identification and health information.  In fact, Tennant makes the following stunning admission in his article….

All I can say is I’d be the first person in line for an implant.

So is this our future?

Is everyone going to be taking lots of microchips and implants?

Will there come a day when microchips and implants are made mandatory?

After all, what better way to truly identify someone?  Identification cards and papers can be forged or can get lost.  But if you implant someone with a microchip how are they going to lose that?

However, we all know that the potential for abuse of all of the technologies mentioned in this article is just too great.  If someday a tyrannical regime gets a hold of these kinds of ultra-powerful technologies the results could be absolutely nightmarish.

Original:  http://endoftheamericandream.com/archives/mind-control-scientists-have-discovered-how-to-use-nanoparticles-to-remotely-control-behavior

The Race for the Brain (history documentary about brain research including brain implant)

The Race for the Brain (history documentary about brain research including brain implant)

Documentary about brain research including brain implant in Norway in the 60’s on behalf of the U.S. Military, Air-force, Army, Navy and the C.I.A. The research was done on unwitting patients without any kind of consent.

Shortened version of a Norwegian TV Documentary.
First aired 22. November 2000 on the Norwegian State TV Channel TV2.

Link to The Norwegian Government website that elaborates on this documentary. The information is in Norwegian use Google translate.
http://www.regjeringen.no/nb/dep/hod/…

 

 

Brain Gate

Scientists Warn of Ethical Battle Concerning Military Mind Control

Scientists Warn of Ethical Battle Concerning Military Mind Control    

future of humanity

Advances in neuroscience are closer than ever to becoming a reality, but scientists are warning the military – along with their peers – that with great power comes great responsibility

imagesCAN4XTAX

March 20, 2012

A future of brain-controlled tanks, automated attack drones and mind-reading interrogation techniques may arrive sooner than later, but advances in neuroscience that will usher in a new era of combat come with tough ethical implications for both the military and scientists responsible for the technology, according to one of the country’s leading bioethicists.

“Everybody agrees that conflict will be changed as new technologies are coming on,” says Jonathan Moreno, author of Mind Wars: Brain Science and the Military in the 21st Century. “But nobody knows where that technology is going.”

Evo-Grid

[See pictures of Navy SEALs]Moreno warns in an essay published in the science journal PLoS Biology Tuesday that the military’s interest in neuroscience advancements “generates a tension in its relationship with science.”

“The goals of national security and the goals of science may conflict. The latter employs rigorous standards of validation in the expansion of knowledge, while the former depends on the most promising deployable solutions for the defense of the nation,” he writes.

Much of neuroscience focuses on returning function to people with traumatic brain injuries, he says. Just as Albert Einstein didn’t know his special theory of relativity could one day be used to create a nuclear weapon, neuroscience research intended to heal could soon be used to harm.

“Neuroscientists may not consider how their work contributes to warfare,” he adds.

mind control

Moreno says there is a fine line between using neuroscience devices to allow an injured person to regain baseline functions and enhancing someone’s body to perform better than their natural body ever could.

“Where one draws that line is not obvious, and how one decides to cross that line is not easy. People will say ‘Why would we want to deny warfighters these advantages?'” he says.

[Mind Control, Biometrics Could Change the World]

Moreno isn’t the only one thinking about this. The Brookings Institution’s Peter Singer writes in his book, Wired for War: The Robotics Revolution and Conflict in the 21st Century, that “‘the Pentagon’s real-world record with things like the aboveground testing of atomic bombs, Agent Orange, and Gulf War syndrome certainly doesn’t inspire the greatest confidence among the first generation of soldiers involved [in brain enhancement research.]”

The military, scientists and ethicists are increasingly wondering how neuroscience technology changes the battlefield. The staggering possibilities are further along than many think. There is already development on automated drones that are programmed to make their own decisions about who to kill within the rules of war. Other ideas that are closer-than-you-think to becoming a military reality: Tanks controlled from half a world away, memory erasures that could prevent PTSD, and “brain fingerprinting” that could be used to extract secrets from enemies.Moreno foretold some of these developments when he first published Mind Wars in 2006, but not without trepidation.

“I was afraid I’d be dismissed as a paranoid schizophrenic when I first published the book,” he says. But then a funny thing happened—the Department of Defense and other military groups began holding panels on neurotechnology to determine how and when it should be used. I was surprised how quickly the policy questions moved forward. Questions like: ‘Can we use autonomous attack drones?’ ‘Must there be a human being in the vehicle?’ ‘How much of a payload can it have?’. There are real questions coming up in the international legal community.”

All of those questions will have to be answered sooner than later, Moreno says, along with a host of others. Should soldiers have the right to refuse “experimental” brain implants? Will the military want to use some of this technology before science deems it safe?

“There’s a tremendous tension about this,” he says. “There’s a great feeling of responsibility that we push this stuff out so we’re ahead of our adversaries.”

Original:  http://www.usnews.com/news/articles/2012/03/20/scientists-warn-of-ethical-battle-concerning-military-mind-control?s_cid=related-links:TOP

%d bloggers like this: