Biotechnology and Human Augmentation

Mick Ryan and Therese Keane


Over the last decade, military theorists and authors in the fields of future warfare and strategy have examined in detail the potential impacts of an ongoing revolution in information technology. There has been a particular focus on the impacts of automation and artificial intelligence on military and national security affairs. This attention on silicon-based disruption has nonetheless meant that sufficient attention may not have been paid to other equally profound technological developments. One of those developments is the field of biotechnology.

There have been some breathtaking achievements in the biological realm over the last decade. Human genome sequencing has progressed from a multi-year and multi-billion dollar undertaking to a much cheaper and quicker process, far outstripping Moore’s Law. Just as those concerned with national security affairs must monitor disruptive silicon-based technologies, leaders must also be literate in the key biological issues likely to impact the future security of nations. One of the most significant matters in biotechnology is that of human augmentation and whether nations should augment military personnel to stay at the leading edge of capability.

Biotechnology and Human Augmentation

Military institutions will continue to seek competitive advantage over potential adversaries. While this is most obvious in the procurement of advanced platforms, human biotechnological advancement is gaining more attention. As a 2017 CSIS report on the Third Offset found most new technological advances will provide only a temporary advantage, assessed to be no more than five years. In this environment, some military institutions may view the newer field of human augmentation as a more significant source of a future competitive edge.

Biological enhancement of human performance has existed for millenia. The discovery of naturally occurring compounds by our ancestors has led to many of the cognitive and physical enhancements currently available. In the contemporary environment, for example, competition in national and international sports continues to fuel a race between creation of the next generation of performance enhancements and regulatory bodies developing detection methods. One example of this is the use of gene doping to hone the competitive edge in athletes, an off-label use of gene therapies originally developed for the treatment of debilitating genetic and acquired diseases. Despite the possibility of cancer and a range of other lethal side effects, some athletes consider these an acceptable risk. Might this not translate to adversaries adopting any possible advantage without equal disregard for ethics and safety considerations?

Gene Doping (Ralf Hiemisch)

It cannot be safely be assumed all states will share  the same ethical, moral, legal, or policy principals as Western democratic societies. Based on developmental trajectories to date, contemporary military institutions should anticipate that all forms of human enhancements, whether relatively benign or highly controversial, will continue to evolve. For contemporary strategic leaders, the key is to anticipate how these developments may potentially impact on military institutions.

Impacts on Military Institutions

Theoretically, future advances in biotechnology may permit the augmentation of cognitive performance. However, given the challenges of biocompatibility of silicon, significant enhancements to human performance in the near future are likely to be found in prosthetics, wearable computing, or human teaming with artificial intelligence. In the longer term, some forms of gene therapy may obviate the need for implants. Noting this, a selection of likely challenges are explored below.

Previously, integration of new groups into the military  dealt with human beings.

A first order issue will be group cohesion. Military institutions have deep experience integrating newcomers into their ranks. Fundamental to effective future teaming will be evolving this approach to establish trust and group cohesion between normal humans and those who are augmented. The degree to which military leaders can and should trust augmented personnel to make decisions about saving and taking lives is likely to be an evolutionary process. It also remains to be seen whether or not teams comprised of augmented and non-augmented humans are capable of developing trust. Experimentation and trials are needed to establish whether augmented people will bias away from decisions and input from non-augmented people and vice versa. While institutions can learn from historical integration challenges, there is one essential difference with augmented humans. Previously, integration of new groups into the military  dealt with human beings. If augmentation using neurotechnology significantly enhances cognitive function, this may represent a separate and distinct group of future Homo sapiens.

The second challenge will be accessibility. Military institutions will need to decide what proportion of its forces will be augmented. Given that early generations of this biotechnology may be expensive, it is unlikely an entire military institution can be augmented. If so, who will be augmented and why? Military institutions will need to develop a value proposition to ensure physical and cognitive augmentation produces superior outcomes to the use of un-augmented personnel. Yet another question to ask is whether military personnel will be de-augmented on leaving the service. The transition of augmented personnel into a largely unaugmented populace may be traumatic for military personnel, and for society more broadly. Even more severe in its repercussions may be transitioning de-augmented personnel into a populace where augmentation is ubiquitous.

The Role of Humans in the Age of Robots (The Luvo)

The third challenge will be conceptual. One Chinese scientist, writing in 2006, has proposed military biotechnology offers the chance to shift to a “new balance between defence and attack, giving rise to a new concept of warfare, a new balance of military force, and new attacking power.” While the emphasis of this particular article was on a more merciful form of warfare—about which we should be skeptical—it nonetheless highlights the requirement to rethink what biotechnology and human augmentation means for how military institutions develop warfighting concepts. When humans arrive with cognitive enhancement, a range of tactical, operational, and strategic concepts may become irrelevant. Strategic thinking, using a combination of biological and silicon-based technologies could take organisations in very different directions than is presently the case. It also bears examining whether those with augmentation will enable greater diversity of performance (particularly in the intellectual realm) or if it will lead to increased homogenisation of physical and cognitive performance.

The fourth challenge is obsolescence. A fundamental challenge for humans waging war is that, despite technological advances, one of the weakest links is the physical capacity of the human. As Patrick Lin was written, technology makes up for our absurd frailty. Therefore, might normal humans without augmentation become irrelevant in a new construct where military institutions possess large numbers of physically and cognitively augmented personnel? It remains to be seen whether unaugmented humans might able to compete with physically and cognitively augmented military personnel. The augmentation of humans for different physical and cognitive functions may also drive change in how military institutions operate, plan, and think strategically.

A fifth challenge is military education and training. Traditional military training emphases the teaching of humans to achieve learning outcomes and missions as individuals and teams. In an integrated augmented/non-augmented institution, training methods must evolve to account for the different and improved capabilities of augmented personnel and to blend the capabilities of augmented and non-augmented personnel. Similarly, education for military leaders currently seeks to achieve their intellectual development in the art and science of war. If humans augmented with cognitive enhancements are present, both institutional and individual professional military education will also need to evolve. Learning delivery, as well as key learning outcomes, will have to be re-examined to account for the enhanced physical and cognitive performance of this new segment of the military workforce. Even issues as basic as fitness assessments must be re-examined. Potentially, military organisations could drop physical assessments by automatically augmenting people to the institutionally desired level of performance.

The sixth challenge is one of choice. Command structures demand a reduction in an individual’s free will to refuse such that informed consent is not quite the same as for the general population. And when experimental augmentation options progress to become approved interventions, can we equate a parent considering whether to choose an approved cognitive augmentation option for their child to a soldier contemplating the same when operating alongside augmented peers where the stakes are orders of magnitude greater? How much choice will military personnel have in the augmentation process? Will this be on a volunteer basis or by direction, and what are the moral, legal, and ethical implications of these stances? Speculation that augmentation may become mandatory for some professions may also apply to the military.

The final issue addressed in this article is one of ethics. Research communities are grappling with the ethical and moral implications of augmentation for society as a whole. While the first concern in evaluating the military applications of biotechnology is international humanitarian law, bioethics must also be considered. Ethical considerations pervade almost every aspect of human augmentation, and there are ethical considerations threaded through the other challenges raised in this article. For example, beyond the first order questions of whether we should augment soldiers are issues such as how much augmentation should be allowable. Military institutions should also assess the cumulative effects of multiple augmentations and the consequences of converging augmentation. There may also be a point at which a highly augmented human may cross the human-machine barrier, as well as a range of unanticipated capabilities that emerge from different augmentation combinations.

A Way Ahead

These issues must be informed by those within the biotechnology community, but they alone cannot solve them. Broader involvement by senior military, government, and community leaders is required. One expert in biotechnology has written that “clearly the new forms of power being unleashed by bio-technology will have to be harnessed and used with greater wisdom than power has been used in the past.” If military institutions are to demonstrate wisdom in their investments in biotechnology, they must explore societal impacts as well as effects within military institutions.

“Splitting humankind into biological castes will destroy the foundations of liberal ideology. Liberalism still presupposes that all human beings have equal value and authority.”

It is likely some augmentation will be—at least initially—expensive.  It may be beyond the means of most people in society and, potentially, many government and corporate institutions. If only military personnel might be augmented, what are the impacts on civil-military relationships, and who would make this decision? In this construct, it could be unethical to deny the benefits of augmentation to wider society. However as Yuval Harari has noted, this may see a differentiation in how society views augmented and non-augmented people—“Splitting humankind into biological castes will destroy the foundations of liberal ideology. Liberalism still presupposes that all human beings have equal value and authority.” In Western democracies, this poses profound questions about conferred advantage, societal sense of fairness and equality, and the value of individuals within society.

In Western democratic systems, development of regulation, policy, and legal frameworks is not keeping pace with the current tempo of complicated technological advancements. It cannot be assumed other states are allowing these deficits to slow their efforts in biotechnology, not to mention the unregulated efforts of non-state actors. While the focus of the fourth industrial revolution remains predominantly on technologies, perhaps for Australia (and other democracies) it is also these areas which require a complementary revolution in the Whole of Nation enterprise so as to keep up with the pace of change and facilitate systematic assessment of human augmentation implications.

Conclusion

The potential to augment the physical and cognitive capacity of humans is seductive. There will be some who will not demonstrate responsible behaviour in taking advantage of these new technologies. Humans have demonstrated in the past the capacity to responsibly manage disruptive technologies such as flight, atomic weapons, and space-based capabilities. This means thoughtful academics, national security practitioners, and people from wider society must be part of the discussion on why and how biotechnology might be used in future. It is vital for the future of global security, and for the human race, that mechanisms for responsible ethical and legal use of biotechnology are considered and developed. This must occur in parallel with the scientific endeavours to develop new biotechnologies.


Mick Ryan is an Australian Army officer, and Commander of the Australian Defence College in Canberra, Australia. A distinguished graduate of Johns Hopkins University and the USMC Staff College and School of Advanced Warfare, he is a passionate advocate of professional education and lifelong learning. Therese Keane is a scientist with the Defence Science and Technology Group. Although with a background in mathematics now expanding into biotechnology. The views expressed are the authors’ and do not reflect the official position of the Australian Department of Defence or the Australian Government.

The real-life Mind-Matrix…

Mail on LineThe real-life Matrix: MIT researchers reveal interface that can allow a computer to plug into the brain 

brain control

  • System could deliver optical signals and drugs directly into the brain
  • Could lead to devices for treatment of conditions such as Parkinson’s

It has been the holy grail of science fiction – an interface that allows us to plug our brain into a computer.

Now, researchers at MIT have revealed new fibres less than a width of a hair that could make it a reality.

They say their system that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs.

Christina Tringides, a senior at MIT and member of the research team, holds a sample of the multifunction fiber that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs.

Christina Tringides, a senior at MIT and member of the research team, holds a sample of the multifunction fiber that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs.

HOW IT WORKS

The new fibers are made of polymers that closely resemble the characteristics of neural tissues.

The multifunction fiber that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs.

Combining the different channels could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

‘We’re building neural interfaces that will interact with tissues in a more organic way than devices that have been used previously,’ said MIT’s Polina Anikeeva, an assistant professor of materials science and engineering.

The human brain’s complexity makes it extremely challenging to study not only because of its sheer size, but also because of the variety of signaling methods it uses simultaneously.

Conventional neural probes are designed to record a single type of signaling, limiting the information that can be derived from the brain at any point in time.

Now researchers at MIT may have found a way to change that.

By producing complex fibers that could be less than the width of a hair, they have created a system that could deliver optical signals and drugs directly into the brain, along with simultaneous electrical readout to continuously monitor the effects of the various inputs.

The newC technology is described in a paper in the journal Nature Biotechnology.

The new fibers are made of polymers that closely resemble the characteristics of neural tissues, Anikeeva says, allowing them to stay in the body much longer without harming the delicate tissues around them.

To do that, her team made use of novel fiber-fabrication technology pioneered by MIT professor of materials science Yoel Fink and his team, for use in photonics and other applications.

The result, Anikeeva explains, is the fabrication of polymer fibers ‘that are soft and flexible and look more like natural nerves.’

Devices currently used for neural recording and stimulation, she says, are made of metals, semiconductors, and glass, and can damage nearby tissues during ordinary movement.

‘It’s a big problem in neural prosthetics,’ Anikeeva says.

The result, Anikeeva explains, is the fabrication of polymer fibers 'that are soft and flexible and look more like natural nerves.'

HOW IT WORKS 

The new fibers are made of polymers that closely resemble the characteristics of neural tissues.

The multifunction fiber that could deliver optical signals and drugs directly into the brain, along with electrical readouts to continuously monitor the effects of the various inputs. 

Combining the different channels could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

‘We’re building neural interfaces that will interact…

‘They are so stiff, so sharp — when you take a step and the brain moves with respect to the device, you end up scrambling the tissue.’

The key to the technology is making a larger-scale version, called a preform, of the desired arrangement of channels within the fiber: optical waveguides to carry light, hollow tubes to carry drugs, and conductive electrodes to carry electrical signals.

These polymer templates, which can have dimensions on the scale of inches, are then heated until they become soft, and drawn into a thin fiber, while retaining the exact arrangement of features within them.

A single draw of the fiber reduces the cross-section of the material 200-fold, and the process can be repeated, making the fibers thinner each time and approaching nanometer scale.

During this process, Anikeeva says, ‘Features that used to be inches across are now microns.’

Combining the different channels in a single fiber, she adds, could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

For example, light could be transmitted through the optical channels to enable optogenetic neural stimulation, the effects of which could then be monitored with embedded electrodes.

Combining the different channels in a single fiber, she adds, could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

Combining the different channels in a single fiber, she adds, could enable precision mapping of neural activity, and ultimately treatment of neurological disorders, that would not be possible with single-function neural probes.

At the same time, one or more drugs could be injected into the brain through the hollow channels, while electrical signals in the neurons are recorded to determine, in real time, exactly what effect the drugs are having.

MIT researchers discuss their novel implantable device that can deliver optical signals and drugs to the brain, without harming the brain tissue.

The system can be tailored for a specific research or therapeutic application by creating the exact combination of channels needed for that task. ‘You can have a really broad palette of devices,’ Anikeeva says.

While a single preform a few inches long can produce hundreds of feet of fiber, the materials must be carefully selected so they all soften at the same temperature.

The fibers could ultimately be used for precision mapping of the responses of different regions of the brain or spinal cord, Anikeeva says, and ultimately may also lead to long-lasting devices for treatment of conditions such as Parkinson’s disease.

John Rogers, a professor of materials science and engineering and of chemistry at the University of Illinois at Urbana-Champaign who was not involved in this research, says, ‘These authors describe a fascinating, diverse collection of multifunctional fibers, tailored for insertion into the brain where they can stimulate and record neural behaviors through electrical, optical, and fluidic means.

The results significantly expand the toolkit of techniques that will be essential to our development of a basic understanding of brain function.’

Read more: http://www.dailymail.co.uk/sciencetech/article-2927410/The-real-life-Matrix-MIT-researchers-reveal-interface-allow-computer-plug-brain.html#ixzz3Q9lDVQv4

What kind of privacy and security measures are needed when a machine can read your mind?

What kind of privacy and security measures are needed when a machine can read your mind?

In recent decades, meetings between information technology, biotechnology, and neuroscience have produced entirely new research, which is developing new, previously unknown products and services.

From nanotechnology opportunities for computer-brain integration occurs even an entirely new civil-military research, to develop a communication between computers and human minds / thoughts, called synthetic or artificial telepathy.

Understanding how the human brain works is not only leading to innovations in medicine, but also providing new models for energy-efficient, fault tolerant and adaptive computing technologies.

Research about artificial neural networks (signal processing) systems, and evolutionary, genetic algorithms, resulting in that you can now construct a self-learning computer programming themselves among others to read the human brain’s memories, feelings and knowledge.

Bioelectronics and a miniaturized signal processing systems in the brain may play in brain functional arkitektuer and through the spoken language to find out what the signals mean.

It is about creating a computer model of the brain including the evidence should provide the answer to what a person is, what is a conscience? What a responsibility is? Whence arises norms and values, etc.?None of these questions can be answered without copy the brain’s functional architecture.

Research Council Ethics Committee wrote the following on medical ethics Nano 2004:
Plus and minus with nanotechnology.

+ It is good to give medicine into the brain via the blood-brain barrier. + It is good to insert electrodes into the brain to give sight to a blind or to control a prosthetic hand. + It is good to use nanotechnology to stem terrorism on innocent people. + It is good for those who can afford to exploit nanotechnology for their own health and their own prosperity.

It’s not good when the particles that enter the body through the lungs and stresses the heart and other organs.

– It’s not good if the technology used to read or to influence others’ thoughts, feelings and intentions.

– There is no good if the same technology used to control and manage the innocent people.

– It’s not good for the poor, who do not have access to the advanced technology.

 

Is it ethical for researchers to retain parts of uploaded minds (copied biologically conscious) that when the copied person is deceased?

Scientific psychological approach that studies the mechanisms underlying human thought processes. In the cognitive psychology main areas of work include memory , perception , knowledge representation,language , problem solving , decision making, awareness and intelligence .

Charles Darwin collected on his time in a variety of materials to describe the diversity of species and to announce his great work in 1859, if the origin of species (evolution theory)

Just as Charles Darwin collected the amounts of material, now played human neurons and nervous systems in bit by bit, in order to simulate the human brain and nervous system of the computer models.As computers developed enough power, research will be able to simulate a human brain in real time.

There are already injectable bioelectronics and multimedia technology as a “hang out” with people for years to clone their feelings, memories and knowledge. The protection against illegal recording and exploitation of people, according to Swedish European professors are not enough.

Ethical aspects of so-called ICT (Information and Comunication Technologies) implants in the human body are discussed for several years at the European level of The European Group on Ethics in Science and New Technologies under the guidance of such Professor Goran Hermerén. One of the recommendations is that the dangers of ICT implants will be discussed in EU countries. But this has in any event not occurred in Sweden.

By using the new technology to read and copy human neurons and nervous systems so computers can learn ontologies and later “artificial intelligence”, an intelligence that has no ethical foundations and values.

“Artificial intelligence” is a research area that aims to develop computer-based applications that behave and act in a manner that is indistinguishable from human behavior.

The next step in computer development, computers / software that imitate humans. These computers come with their artificial intelligence to be able to threaten the man’s integrity, identity, autonomy and spirituality.

Years of recordings of people using the Carbon Nanotubes as Electrical Interfaces with Neurons in the cortex,

and cognetive radio technology visualizes piecemeal man’s own self, this is copied to the new more powerful computers.

Some of the research with brain implants (ICT) to clone the human brain is conducted according to many sources, without informed consent. This is probably because the ethical appeal can not be approved for life-long computerized study of brain implants (Carbon Nanotubes as Electrical Interfaces with Neurons in the cortex), where the consequences for the individual is destruction more than the benefits of the research.

Illegal computer cloning could lead to unprecedented physical, psychological and legal consequences for man and society. Illegal data cloning (copy) also involves research to do everything in their power to bring technology to the ICT implants read and copy pro men’s thoughts is not disclosed.

Nanoscience and biological implants can lead to serious problems if the technology is used in ways that violate people’s privacy. It is almost impossible to find electronic components, when incorporated in nanoscale particles. Businesses and governments will this new technology to find out things about people in a whole new way. Therefore, nanotechnology will also require new laws and regulations, just as the development of computers has contributed to the enactment of such Personal Data Act.

Swedish Professors also ask, how can you prevent and control the unauthorized use of nanotechnology, although there are legislation? Traceability, or rather the scarcity of traceability, is a perennial topic of debate on ethics, risk and safety. Another recurring theme is the monitoring, how nanotechnology can be used for monitoring purposes, where the individual or group is unaware of the surveillance and unable to find out if she / they are supervised (e) or not.

The government and their ethical advice, according to the EU has a responsibility to inform and educate the community in this new area of research. This has not been entrusted to the government was aware of the technologies already in 2003.

That some of today’s important scientific breakthroughs in nanotechnology / bioelectronics and information not published, because the established academic, financial and political centers of power to preserve their interests and protect unethical research on humans, research thus miss opportunities revealed. Research and its implications are misleading in relation to the judiciary and traditional medical diagnostics. It also goes against all human rights conventions.

Instead of Sweden and Europe, through their political gatekeepers favors confidential unethical civilian-military research on the civilian population during the development of software and networking technologies for medical and military surveillance would research it can make its research progress and the new paradigm’s insights.

In this way Sweden could use progress to solve many of its current political problems and be able to make an international pioneer work for the benefit of all mankind.

We want this website to create an awareness and an awareness that many of the new technologies described developed on the civilian population in the world, without their consent and / or knowledge, for many years.

Mindtech cooperate with the media and the Church to try to push the ethical debate that the EU research council and Professor Goran Hermerén initiated in this topic back in 2004. An ethical debate that has since been blacked out by the research and its representatives.

Know someone who is multi-media online but do not dare talk about it?

It is easy not to be believed for a person who alleges that a paradigm shift in computer-brain integration and multimedia technology is already here.

We are aware that portions of the information here may sound like pure science fiction, but it is already a real reality.

By: Magnus Olsson

 

LINKING LIFE AND TECHNOLOGY

 

LINKING LIFE AND TECHNOLOGY

ELLEN M. McGEE a1 and GERALD Q. MAGUIRE JR. a2
a1 Long Island Center for Ethics, Long Island University, New York
a2 Royal Institute of Technology, Stockholm, Sweden
 
 
 

Revolutions in semiconductor device miniaturization, bioelectronics, and applied neural control technologies are enabling scientists to create machine-assisted minds, science fiction’s “cyborgs.” In a paper published in 1999, we sought to draw attention to the advances in prosthetic devices, to the myriad of artificial implants, and to the early developments of this technology in cochlear and retinal implants. Our concern, then and now, was to draw attention to the ethical issues arising from these innovations. Since that time, breakthroughs have occurred at a breathtaking pace.

Scientists, researchers, and engineers using differing methodologies are pursuing the possibilities of direct interfaces between brains and machines. Technological innovations as such are neither good nor evil; it is the uses devised for them that create moral implications. As there can be ethical problems inherent in the proper human uses of technologies and because brain chips are a very likely future technology, it is prudent to formulate policies and regulations that will mitigate their ill effects before the technologies are widespread.

Unlike genetic technologies, which have received widespread scrutiny within the scientific community, national governments, and international forums, brain–machine interfaces have received little social or ethical scrutiny. However, the potential of this technology to change and significantly affect humans is potentially far greater than that of genetic enhancements, because genetic enhancements are inherently limited by biology and the single location of an individual, whereas hybrids of human and machine are not so restricted.

Today, intense interest is focused on the development of drugs to enhance memory; yet, these drugs merely promise an improvement of normal memory, not the encyclopedic recall of a computer-enhanced mind combined with the ability to share information at a distance.

The potential of brain chips for transforming humanity are astounding. This paper describes advances in hybrid brain–machine interfaces, offers some likely hypotheses concerning future developments, reflects on the implications of combining cloning and transplanted brain chips, and suggests some potential methods of regulating these technologies. a


Footnotes

a We are grateful to Prof. Michah D. Hester for helpful comments on this article

Link original:   http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1017164

<span>%d</span> bloggers like this: