Thought Reading and Control

Thought Reading and Control

Artificial Intelligence

Artificial Intelligence-Nano Implants provides a new medical imaging technique for the brain and the possibility of “reverse engineering the brain”

future of humanity

The government lacks a regulator who can ensure that the laws for ethical review and informed consent for research on humans with brain implants followed. The shortage means that the Government neither can satisfy the requirements of the conventions on human rights and bioethics incumbent government, a precarious situation for European citizens.Graduate Abuse can happen completely without insight with brain-machine interface and e-science.

When science produces results that are changing the neurobiological description of human consciousness, what is left of the notions that humans have free will and personal responsibility for their actions? New knowledge about the neural basis of morality is blowing also renewed debate about the existence of a universal morality. These questions are discussed within the field of neuroethics, a subject that deals with the philosophical and ethical issues raised by neuroscience and cognitive research. (Centre for Research Ethics & Bioethics )

Magnus Olsson

Scientists have the knowledge of the fMRI and PET cameras, among other things learned where in the brain electrodes (implants) must be placed to the E-science visualization of human perception.

In recent decades meetings between nanotechnology, information technology, biotechnology and neuroscience have produced a new research area, which is developing new, unknown products and services. We are facing a new revolution, which is already running with the launch of mind characterized universal computer. A unique perceptual tool, not only raise awareness for our minds but also imitate them: sight, hearing, taste, smell and touch.

CNN UN stands for Cellular Neural / Non-linear Network – Universal Machine. And there are three innovators Tamás Rosk, Leon Chua, and Angel Rodriguez Vazques, who are the pioneers behind the “revolution of the senses”. They have introduced a new computer policy, which differs from the digital model magazine sparkling, lower standards.

We’ve said ‘yes’ without any major protests to the electronic age “first wave”. When we are referring to the cheap chip that made the PC to every man’s tools. “The second wave” came creeping – also without objection. A series of inexpensive electronic means such as lasers, the Internet was built for broadband and mobile phone, which is now self-evident part of our everyday lives. In the “third wave”, it also applies connections to the brain, called brain-computer integration (brain-Macine interface) and related network-based human-machine language. This means both huge benefits but also disadvantages to humans. The disadvantages include complex legal implications, concerning the identity and integrity.

brain control


Info-Bionic challenging society. In the biological field, we first familiarize ourselves with “smart” devices and tools, which stimulates and motivates the human central nervous system. But it also outlines smart prostheses implanted in the living organism. The direct contact between these “smart” nano-implants and our central nervous system, pointing towards a symbiosis (living together), between brain and computer. This new realm, which is named for info-bionic, challenge course, the traditional values of society and its ethical standards.

Computer scientists also predicts that within the next few years neural interfaces will be designed so that it will not only increase the dynamic range of the senses, but will also enhance memory and enable “cyberthink” that invisible communication built on ideas.

Direct connection to the brain: It is without doubt the most complicated task. Here are dangers as great as the opportunities. This is also bioethics responsibility far greater than in those areas, which so far we have touched. But really, all mined areas and the limitation of the commercial profit hunger is therefore highly desirable.

Future Technologies, Future and Emerging Technologies – FET. The basis for this strategy is the focus on the future of Information and Communication Technology – ICT

brain wheels 

Here are some quotes from the EU’s 7th Framework Programme. “Can one example understand and exploit the ways in which social and biological systems organize themselves and evolve, will pave the way for the development of new opportunities for next-generation software and network technologies. “ “The understanding of how the human brain works not only leads to innovations in medicine, but it also creates new models for energy, fault-tolerant and adaptive computer technology.” “FET support example, been crucial for research in quantum information technology in Europe. This technique promises an enormous computing power far beyond the capacity of ordinary computers, and also completely secure communications. By early investments have FET program made a decisive contribution to Europe now is a world leader in the field. “ “In the FET area carries, in addition, pioneering work on new ideas as artificial living cells, synthetic biology, chemical communication, collective intelligence and two-way interface between brain and machine.”

Research Council has published a booklet packed facts pocket “where gold glitters blue” on the new nanoscience. This new technology opens up tremendous opportunities, but also contains a number of ethical issues. Sweden Europe and the rest of the world currently lacks clear ethical guidelines.

 Building the Mind

Here are quotes from the book written by Ulf Görman, professor of ethics and religious studies at Lund University. Nanoelectronics! A number of ethical declarations have been introduced to prevent abuse of people, including the Declaration of Helsinki. In 1997, also signed the EU Member States’ Convention on Human Rights and Biomedicine “in the Spanish city of Oviedo. -These declarations have been added in response to the abuse of people who were in World War II. Oviedo Convention and other European rules have resulted in new legislation in Sweden. For example, the Privacy Act, which came into force in 1998, and the Act on Ethical Review of Research Involving Humans, which came into force in 2004. Ulf Görman believe that when we do a retrospective, it is easy for us to distinguish between unethical and ethical good research.

Now we open the doors to an unknown area where we do not know how to apply ethics.What should it be and what should not be allowed when you can make the electrode implant that can both influence and learn of the brain? He takes up the example of studying learning and memory. ”Micro Implants can provide unprecedented opportunities to understand how we learn and remember things, and hence why we forget and find it difficult to learn. While it may be perceived as a form of abuse that like that look in our most private mental world “.

Thought Control – a new ethical problem. Being able to connect the human brain to a computer via electrodes open, of course, frightening possibilities. Will it be feasible to control a person’s thoughts? There are important ethical aspects of this. One could of course theoretically able to control brain functions and modify people’s personality. For example, making them more or less prone to aggression or to increase learning ability by adding the chronic stimulation. It’s like with everything else, in that the knowledge is there, you can use it in many ways. Ulf Görman

Swedish and EU researchers possess, in secret, a privilege of the commercial profit hunger to develop these advanced technologies. Researchers may, without obtaining the informed consent and without the approval of an ethics board inject nanotechnology and research on humans, completely “Top Secret”. This is the way to the products, software and network technology is approaching patent application and a commercial launch of the research results, is on its way.

mind brain 

Research where informed consent could not be obtained and an approval of an ethics board would not be due to the physical and psychological risks for the individual is totally unknown, will not stop Swedish an EU researchers.

Withholding research reports on the development of new technologies means that the existing diagnosis in psychiatry and the judicial system disposes of the victims of abuse research, which makes these instances of “missing traders” for the illegal research. In this way, researchers will escape detection, and no responsibility. In nanotechnology and human-machine integration is the market and the power that controls, not ethics.

Because of that situation, people are slaughtered with impunity as research objects with the new technologies. When the legislative and diagnostics are missing, the computer-brain integration, it follows that attempts objects during research time exposed to serious torture.Graduate abuses have naturally resulted in the subjects in pure frustration committed ensanity acts and ended up in prison or in psychiatric care. Had the law existed and functioned, this research instead to point out that scientists are forced to drive people “across the border” and charged to the judiciary and mental health.

Although concrete evidence because of evaded research reports are currently lacking, so will future research and patents, of course, be able to uncover this hidden aggravated criminal research.

When the government knowingly or unknowingly withholds itself from scientific information will result in a right wrecked Sweden (EU). People can during the long development of the computer brains of the Internet-based human-machine language is not heard. This leads to pure execution is under development to cover up the criminal teknologys rampage.

How much longer must people illegally be injected at hospitals? How much longer must people’s brains are allowed to “cut” for the enslavement of the scientists’ services without compensation? How much longer must people assaulted, death and / or misdiagnosed before the government makes sure to meet the conventions on human rights and bioethics? Who takes responsibility for the children that are left homeless when the researchers injected and linked up attempts of people who have family, social welfare and labor? How many people have died earlier in scientific experiments because of lack of transparency in the Swedish neuroscience hunt for power and money? How many ensanity acts, traffic accidents, deaths in maternity hospitals, and even political murder has been diagnosed, but no account is taken of nanotechnology and the many years of development of technologies for computer-brain integration and the study of human behavior?

Five years of direct connectivity of the brain, the pattern recognition of brain neurons to cognitive behavior (perception), designed with artificial intelligence in a multimedia connection between brain implant and computers.

By Magnus Olsson (Mindtech) Sweden

The missing link between us and the future !

The missing link between us and the future

In the early 1990s, the IT industry got very excited about virtual reality, the idea that you could use some sort of headset display to wander around in a 3d computer-generated world. We quickly realised there are zillions of variations on this idea, and after the one that became current computer gaming (3d worlds on a 2d monitor) the biggest of the rest was augmented reality, where data and images could be superimposed on the field of view.

Now, we are seeing apps on phones and pads that claim to be augmented reality, showing where the nearest tube station is for example. To a point I guess they are, but only in as far as they can let you hold up a display in front of you and see images relevant to the location and direction. They hardly amount to a head up display, and fall a long way short of the kind of superimposition we’re been used to on sci-fi since Robocop or Terminator. It is clear that we really need a proper head-up display, one that doesn’t require you to take a gadget out and hold it up in front of you.

There are some head-up displays out there. Some make overlay displays in a small area of your field of view, often using small projectors and mirrors. Some use visors.  However the video visor based displays are opaque. They are fine for watching TV or playing games while seated, but not much use for wandering around.

This will change in the next 18 months – 2 years. Semi-transparent visors will begin to appear then. The few years after that will undoubtedly see rapid development of them, eventually bringing a full hi-res 3d overlay capability. And that will surely be a major disruptive technology. Just as we are getting used to various smart phones, pads, ebbook readers and 3d TVs, they could all be absorbed into a general purpose head up display that can be used for pretty much anything.

It is hard to overstate the potential of this kind of interface once it reaches good enough quality. It allows anything from TV, games, or the web, to be blended with any real world scene or activity. This will transform how we shop, work and socialise, how we design and use buildings, and even how we use art or display ourselves. Each of these examples could easily fill a book.  The whole of the world wide web was enabled by the convergence of just the computing and telecoms industries. The high quality video visor will enable convergence of the real world with the whole of the web, media, and virtual worlds, not just two industry sectors. Augmented reality will be a huge part of that, but even virtual reality and the zillions of variants can then start to be explored too.

In short, the semi-transparent video visor is the missing link. It is the biggest bottleneck now stopping the future arriving. Everything till we get that is a sideshow.

Artificial Hippocampus, the Borg Hive Mind, and Other Neurological Endeavors

Artificial Hippocampus, the Borg Hive Mind, and Other Neurological Endeavors

November 15

Many of us know about ‘Borg Hive Mind’ from TV programs where the characters are linked through brain-to-brain or computer-to-brain interactions. However, this is more than a science fiction fantasy. The idea was contemplated seriously in the 2002 National Science Foundation report, Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science. ‘Techlepathy‘ is the word coined, referring to the communication of information directly from one mind to another (i.e. telepathy) with the assistance of technology.

Many research activities focus on neuro-engineering and the cognitive sciences. Many neuroscientists and bioengineers now work on:

  • cognitive computing
  • digitally mapping the human brain (see here and here); the mouse brain map has just been published
  • developing microcircuits that can repair brain damage, and
  • other numerous projects related to changing the cognitive abilities and functioning of humans, and artificial intelligence.

Journals exist for all of these activities — including the Human Brain Mappingjournal. Some envision a Human Cognome Project. James Albus, a senior fellow and founder of the Intelligent Systems Division of the National Institute of Standards and Technology believes the era of ‘engineering the mind‘ is here. He has proposed a national program for developing a scientific theory of the mind.

Neuromorphic engineering, Wikipedia says, “is a new interdisciplinary discipline that takes inspiration from biology, physics, mathematics, computer science and engineering to design artificial neural systems, such as vision systems, head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are based on those of biological nervous systems.”

mind computer

There are many examples.

Researchers from Harvard University have linked nanowire field-effect transistors to neurons. Three applications are envisioned: hybrid biological/electronic devices, interfaces to neural prosthetics, and the capture of high-resolution information about electrical signals in the brain. Research is advancing in four areas: neuronal networks, interfaces between the brain and external neural prosthetics, real-time cellular assays, and hybrid circuits that couple digital nanoelectronic and biological computing components.

Numenta, a company formed in 2005, states on its webpage that it “is developing a new type of computer memory system modelled after the human neocortex.”

Kwabena Boahen, an associate professor of bioengineering at Stanford University, has developed Neurogrid, “a specialized hardware platform that will enable the cortex’s inner workings to be simulated in detail — something outside the reach of even the fastest supercomputers.” He is also working on a silicon retina and a silicon chip that emulates the way the juvenile brain wires itself up.

Researchers at the University of Washington are working on an implantable electronic chip that may help to establish new nerve connections in the part of the brain that controls movement.

The Blue Brain project — a collaboration of IBM and the Ecole Polytechnique Federale de Lausanne, in Lausanne, Switzerland – will create a detailed model of the circuitry in the neocortex.

A DNA switchnanoactuator‘ has been developed by Dr. Keith Firman at the University of Portsmouth and other European researchers, which can interface living organisms with computers.

Kevin Warwick had an RFID transmitter (a future column will deal with RFID chips) implanted beneath his skin in 1998, which allowed him to control doors, lights, heaters, and other computer-controlled devices in his proximity. In anotherexperiment, he and his wife Irena each had electrodes surgically implanted in their arms. The electrodes were linked by radio signals to a computer which created a direct link between their nervous systems. Kevin’s wife felt when he moved his arm.


In his book I, Cyborg, Kevin Warwick imagines that 50 years from now most human brains will be linked electronically through a global computer network.

St. Joseph’s Hospital in the United States has implanted neurostimulators (deep brain stimulators) using nanowires to connect a stimulating device to brain. A pacemaker-like device is implanted in the chest, and flexible wires are implanted in the brain. Electrical impulses sent from the ‘pacemaker’ to the brain are used to treat Parkinson’s, migraine headaches and chronic pain, depression, obsessive-compulsive disorder, improve the mobility of stroke victims, and curb cravings in drug addicts.

In 2003/2004 a variety of publications (see links below) reported on the efforts of professor Theodore W. Berger, director of the Center for Neural Engineering at the University of Southern California, and his colleagues, to develop the world’s firstbrain prosthesis – an ‘artificial hippocampus’ which is supposed to act as a memory bank. These publications highlighted in particular the use of such implants for Alzheimer’s patients.

The research program is proceeding in four stages: (1) tests on slices of rat brains kept alive in cerebrospinal fluid… reported as successful in 2004; (2) tests on live rats which are to take place within three years; (3) tests on live monkeys; and (4) tests on humans — very likely on Alzheimer’s patients first.

The Choice is Yours

If these advancements come to pass, they will create many ethical, legal, privacy and social issues. For the artificial hippocampus we should ask: would brain implants force some people to remember things they would rather forget? Could someone manipulate our memory? What would be the consequence of uploading information (see my education column)? Will we still have control over what we remember? Could we be forced to remember something over and over? If we can communicate with each other through a computer what will be the consequence of a Global Brain?

It is important that people become more involved in the governance of neuro-engineering and cognitive science projects. We should not neglect these areas because we perceive them to be science fiction. We also need to look beyond the outlined ‘medical applications.’ If the artificial hippocampus works, it will likely be used for more than dealing with diseases.

I will cover brain-machine interfaces, neuro-pharmaceutical-based ‘cognitive enhancement,’ and neuroethics and the ethics of artificial intelligence in future columns.

Gregor Wolbring is a biochemist, bioethicist, science and technology ethicist, disability/vari-ability studies scholar, and health policy and science and technology studies researcher at the University of Calgary. He is a member of the Center for Nanotechnology and Society at Arizona State University; Member CAC/ISO – Canadian Advisory Committees for the International Organization for Standardization section TC229 Nanotechnologies; Member of the editorial team for the Nanotechnology for Development portal of the Development Gateway Foundation; Chair of the Bioethics Taskforce of Disabled People’s International; and Member of the Executive of the Canadian Commission for UNESCO. He publishes the Bioethics, Culture and Disability website, moderates a weblog forthe International Network for Social Research on Diasbility, and authors a weblogon NBICS and its social implications.


How to Use Light to Control the Brain

How to Use Light to Control the Brain

Stephen Dougherty, Scientific American
Date: 01 April 2012 Time: 09:38 AM

In the film Amèlie, the main character is a young eccentric woman who attempts to change the lives of those around her for the better. One day Amèlie finds an old rusty tin box of childhood mementos in her apartment, hidden by a boy decades earlier. After tracking down Bretodeau, the owner, she lures him to a phone booth where he discovers the box. Upon opening the box and seeing a few marbles, a sudden flash of vivid images come flooding into his mind. Next thing you know, Bretodeau is transported to a time when he was in the schoolyard scrambling to stuff his pockets with hundreds of marbles while a teacher is yelling at him to hurry up.

We have all experienced this: a seemingly insignificant trigger, a scent, a song, or an old photograph transports us to another time and place. Now a group of neuroscientists have investigated the fascinating question: Can a few neurons trigger a full memory?
In a new study, published in Nature, a group of researchers from MIT showed for the first time that it is possible to activate a memory on demand, by stimulating only a few neurons with light, using a technique known as optogenetics. Optogenetics is a powerful technology that enables researchers to control genetically modified neurons with a brief pulse of light.

To artificially turn on a memory, researchers first set out to identify the neurons that are activated when a mouse is making a new memory. To accomplish this, they focused on a part of the brain called the hippocampus, known for its role in learning and memory, especially for discriminating places. Then they inserted a gene that codes for a light-sensitive protein into hippocampal neurons, enabling them to use light to control the neurons.

With the light-sensitive proteins in place, the researchers gave the mouse a new memory. They put the animal in an environment where it received a mild foot shock, eliciting the normal fear behavior in mice: freezing in place. The mouse learned to associate a particular environment with the shock.

Next, the researchers attempted to answer the big question: Could they artificially activate the fear memory? They directed light on the hippocampus, activating a portion of the neurons involved in the memory, and the animals showed a clear freezing response. Stimulating the neurons appears to have triggered the entire memory.

The researchers performed several key tests to confirm that it was really the original memory recalled. They tested mice with the same light-sensitive protein but without the shock; they tested mice without the light-sensitive protein; and they tested mice in a different environment not associated with fear. None of these tests yielded the freezing response, reinforcing the conclusion that the pulse of light indeed activated the old fear memory.

In 2010, optogenetics was named the scientific Method of the Year by the journal Nature Methods. The technology was introduced in 2004 by a research group at Stanford University led by Karl Deisseroth, a collaborator on this research. The critical advantage that optogenetics provides over traditional neuroscience techniques, like electrical stimulation or chemical agents, is speed and precision. Electrical stimulation and chemicals can only be used to alter neural activity in nonspecific ways and without precise timing. Light stimulation enables control over a small subset of neurons on a millisecond time scale.

Over the last several years, optogenetics has provided powerful insights into the neural underpinnings of brain disorders like depression, Parkinson’s disease, anxiety, and schizophrenia. Now, in the context of memory research, this study shows that it is possible to artificially stimulate a few neurons to activate an old memory, controlling an animals’ behavior without any sensory input. This is significant because it provides a new approach to understand how complex memories are formed in the first place.

Lest ye worry about implanted memories and mind control, this technology is still a long way from reaching any human brains. Nevertheless, the first small steps towards the clinical application of optogenetics have already begun. A group at Brown University, for example, is working on a wireless optical electrode that can deliver light to neurons in the human brain. Who knows, someday, instead of new technology enabling us to erase memories á la Eternal Sunshine of the Spotless Mind, we may actually undergo memory enhancement therapy with a brief session under the lights.

This article was first published on Scientific American. © 2012 Follow Scientific American on Twitter @SciAm and @SciamBlogs. for the latest in science, health and technology news.

Grid-Based Computing to Fight Neurological Disease

ScienceDaily: Your source for the latest research news<br />
and science breakthroughs -- updated daily

Grid-Based Computing to Fight Neurological Disease

ScienceDaily (Apr. 11, 2012) — Grid computing, long used by physicists and astronomers to crunch masses of data quickly and efficiently, is making the leap into the world of biomedicine. Supported by EU-funding, researchers have networked hundreds of computers to help find treatments for neurological diseases such as Alzheimer’s. They are calling their system the ‘Google for brain imaging.’

Through the Neugrid project, the pan-European grid computing infrastructure has opened up new channels of research into degenerative neurological disorders and other illnesses, while also holding the promise of quicker and more accurate clinical diagnoses of individual patients.

The infrastructure, set up with the support of EUR 2.8 million in funding from the European Commission, was developed over three years by researchers in seven countries. Their aim, primarily, was to give neuroscientists the ability to quickly and efficiently analyse ‘Magnetic resonance imaging’ (MRI) scans of the brains of patients suffering from Alzheimer’s disease. But their work has also helped open the door to the use of grid computing for research into other neurological disorders, and many other areas of medicine.

‘Neugrid was launched to address a very real need. Neurology departments in most hospitals do not have quick and easy access to sophisticated MRI analysis resources. They would have to send researchers to other labs every time they needed to process a scan. So we thought, why not bring the resources to the researchers rather than sending the researchers to the resources,’ explains Giovanni Frisoni, a neurologist and the deputy scientific director of IRCCS Fatebenefratelli, the Italian National Centre for Alzheimer’s and Mental Diseases, in Brescia.

Five years’ work in two weeks The Neugrid team, led by David Manset from MaatG in France and Richard McClatchey from the University of the West of England in Bristol, laid the foundations for the grid infrastructure, starting with five distributed nodes of 100 cores (CPUs) each, interconnected with grid middleware and accessible via the internet with an easy-to-use web browser interface. To test the infrastructure, the team used datasets of images from the Alzheimer’s Disease Neuroimaging Initiative in the United States, the largest public database of MRI scans of patients with Alzheimer’s disease and a lesser condition termed ‘Mild cognitive impairment’.

‘In Neugrid we have been able to complete the largest computational challenge ever attempted in neuroscience: we extracted 6,500 MRI scans of patients with different degrees of cognitive impairment and analysed them in two weeks,’ Dr. Frisoni, the lead researcher on the project, says, ‘on an ordinary computer it would have taken five years!’.

Though Alzheimer’s disease affects about half of all people aged 85 and older, its causes and progression remain poorly understood. Worldwide more than 35 million people suffer from Alzheimer’s, a figure that is projected to rise to over 115 million by 2050 as the world’s population ages.

Patients with early symptoms have difficulty recalling the names of people and places, remembering recent events and solving simple maths problems. As the brain degenerates, patients in advanced stages of the disease lose mental and physical functions and require round-the-clock care.

The analysis of MRI scans conducted as part of the Neugrid project should help researchers gain important insights into some of the big questions surrounding the disease such as which areas of the brain deteriorate first, what changes occur in the brain that can be identified as biomarkers for the disease and what sort of drugs might work to slow or prevent progression.

Neugrid built on research conducted by two prior EU-funded projects: Mammogrid, which set up a grid infrastructure to analyse mammography data, and AddNeuroMed, which sought biomarkers for Alzheimer’s. The team are now continuing their work in a series of follow-up projects. An expanded grid and a new paradigm Neugrid for You (N4U), a direct continuation of Neugrid, will build upon the grid infrastructure, integrating it with ‘High performance computing’ (HPC) and cloud computing resources. Using EUR 3.5 million in European Commission funding, it will also expand the user services, algorithm pipelines and datasets to establish a virtual laboratory for neuroscientists.

‘In Neugrid we built the grid infrastructure, addressing technical challenges such as the interoperability of core computing resources and ensuring the scalability of the architecture. In N4U we will focus on the user-facing side of the infrastructure, particularly the services and tools available to researchers,’ Dr. Frisoni says. ‘We want to try to make using the infrastructure for research as simple and easy as possible,’ he continues, ‘the learning curve should not be much more difficult than learning to use an iPhone!’

N4U will also expand the grid infrastructure from the initial five computing clusters through connections with CPU nodes at new sites, including 2,500 CPUs recently added in Paris in collaboration with the French Alternative Energies and Atomic Energy Commission (CEA), and in partnership with ‘Enabling grids for e-science Biomed VO’, a biomedical virtual organisation.

Another follow-up initiative, outGRID, will federate the Neugrid infrastructure, linking it with similar grid computing resources set up in the United States by the Laboratory of Neuro Imaging at the University of California, Los Angeles, and the CBRAIN brain imaging research platform developed by McGill University in Montreal, Canada. A workshop was recently held at the International Telecommunication Union, an agency of the United Nations, to foster this effort.

Dr. Frisoni is also the scientific coordinator of the DECIDE project, which will work on developing clinical diagnostic tools for doctors built upon the Neugrid grid infrastructure. ‘There are a couple of important differences between using brain imaging datasets for research and for diagnosis,’ he explains. ‘Researchers compare many images to many others, whereas doctors are interested in comparing images from a single patient against a wider set of data to help diagnose a disease. On top of that, datasets used by researchers are anonymous, whereas images from a single patient are not and protecting patient data becomes an issue.’

The DECIDE project will address these questions in order to use the grid infrastructure to help doctors treat patients. Though the main focus of all these new projects is on using grid computing for neuroscience, Dr. Frisoni emphasises that the same infrastructure, architecture and technology could be used to enable new research — and new, more efficient diagnostic tools — in other fields of medicine. ‘We are helping to lay the foundations for a new paradigm in grid-enabled medical research,’ he says.

Neugrid received research funding under the European Union’s Seventh Framework Programme (FP7).

Scientists at MIT replicate brain activity with chip,,,


Scientists at MIT replicate brain activity with chip

A graphic of a brain
17 November 2011  at 20:42 GMT
The chip replicates how information flows around the brain

Scientists are getting closer to the dream of creating computer systems that can replicate the brain.

Researchers at the Massachusetts Institute of Technology have designed a computer chip that mimics how the brain’s neurons adapt in response to new information.

Such chips could eventually enable communication between artificially created body parts and the brain.

It could also pave the way for artificial intelligence devices.

There are about 100 billion neurons in the brain, each of which forms synapses – the connections between neurons that allow information to flow – with many other neurons.

This process is known as plasticity and is believed to underpin many brain functions, such as learning and memory.

Neural functions

The MIT team, led by research scientist Chi-Sang Poon, has been able to design a computer chip that can simulate the activity of a single brain synapse.

Activity in the synapses relies on so-called ion channels which control the flow of charged atoms such as sodium, potassium and calcium.

The ‘brain chip’ has about 400 transistors and is wired up to replicate the circuitry of the brain.

Current flows through the transistors in the same way as ions flow through ion channels in a brain cell.

“We can tweak the parameters of the circuit to match specific ions channels… We now have a way to capture each and every ionic process that’s going on in a neuron,” said Mr Poon.

Neurobiologists seem to be impressed.

It represents “a significant advance in the efforts to incorporate what we know about the biology of neurons and synaptic plasticity onto …chips,” said Dean Buonomano, a professor of neurobiology at the University of California.

“The level of biological realism is impressive,” he added.

The team plans to use their chip to build systems to model specific neural functions, such as visual processing.

Such systems could be much faster than computers which take hours or even days to simulate a brain circuit. The chip could ultimately prove to be even faster than the biological process.

More on This Story

Related Stories

Developing a human brain in brain chip for a hybrid brain,,,

BBC News

 Tuesday, 11 March 2008, 10:32 GMT 

Chemical brain controls nanobots
By Jonathan Fildes
Science and technology reporter, BBC News

Artificial brain
The researchers have already built larger ‘brains’

A tiny chemical “brain” which could one day act as a remote control for swarms of nano-machines has been invented.

The molecular device – just two billionths of a metre across – was able to control eight of the microscopic machines simultaneously in a test.

Writing in Proceedings of the National Academy of Sciences, scientists say it could also be used to boost the processing power of future computers.

Many experts have high hopes for nano-machines in treating disease.

“If [in the future] you want to remotely operate on a tumour you might want to send some molecular machines there,” explained Dr Anirban Bandyopadhyay of the International Center for Young Scientists, Tsukuba, Japan.

“But you cannot just put them into the blood and [expect them] to go to the right place.”

Dr Bandyopadhyay believes his device may offer a solution. One day they may be able to guide the nanobots through the body and control their functions, he said.

“That kind of device simply did not exist; this is the first time we have created a nano-brain,” he told BBC News.

Computer brain

The machine is made from 17 molecules of the chemical duroquinone. Each one is known as a “logic device”.

How nanotechnology is building the future from the bottom up

They each resemble a ring with four protruding spokes that can be independently rotated to represent four different states.

One duroquinone molecule sits at the centre of a ring formed by the remaining 16. All are connected by chemical bonds, known as hydrogen bonds.

The state of the control molecule at the centre is switched by a scanning tunnelling microscope (STM).

These large machines are a standard part of the nanotechnologist’s tool kit, and allow the viewing and manipulation of atomic surfaces.

Using the STM, the researchers showed they could change the central molecule’s state and simultaneously switch the states of the surrounding 16.

“We instruct only one molecule and it simultaneously and logically instructs 16 others at a time,” said Dr Bandyopadhyay.

The configuration allows four billion different possible combinations of outcome.

The two nanometre diameter structure was inspired by the parallel communication of glial cells inside a human brain, according to the team.

Robot control

To test the control unit, the researchers simulated docking eight existing nano-machines to the structure, creating a “nano-factory” or a kind of “chemical swiss army knife”.

Nano dust (SPL)

Scientists believe nano-machines could have medical applications

The attached devices, created by other research groups, included the “world’s tiniest elevator”, a molecular platform that can be raised or lowered on command.

The device is about two and a half nanometres (billionths of a metre) high, and the lift moves less than one nanometre up and down.

All eight machines simultaneously responded to a single instruction in the simulation.

“We have clear cut evidence that we can control those machines,” said Dr Bandyopadhyay.

This “one-to-many” communication and the device’s ability to act as a central control unit also raises the possibility of using the device in future computers, he said.

Machines built using devices such as this would be able to process 16 bits of information simultaneously.

Current silicon Central Processing Units (CPUs) can only carry out one instruction at a time, albeit millions of times per second.

The researchers say they have already built faster machines, capable of 256 simultaneous operations, and have designed one capable of 1024.

However, according to Professor Andrew Adamatzky of the University of the West England (UWE), making a workable computer would be very difficult at the moment.

“As with other implementations of unconventional computers the application is very limited, because they operate [it] using scanning tunnel microscopy,” he said.

But, he said, the work is promising.

“I am sure with time such molecular CPUs can be integrated in molecular robots, so they will simply interact with other molecular parts autonomously.”

Brain Implant Allows Users to Instantly Speak Foreign Language,,,

bluered.gif (1041 bytes)

Nano-Chip Brain Implant Allows Users to Instantly Speak Foreign Language,,,

bluered.gif (1041 bytes)

The first-ever nano-chip language translators are rolling off the assembly line and into cosmetic surgeons’ offices quicker than you can say “Se Habla Espanol?” No longer will it be necessary for those wishing to learn a second or even third language to go through the arduous process of weeks and weeks of studying tapes or attending language classes. The product is called “Nano-Second Language” or NSL, and they are expected to sell out within weeks.

bluered.gif (1041 bytes)

The makers of the NSL brain implant first developed the product under a grant by the United States Department of Defense as a solution to the problem servicemen and women were having when being shipped overseas to the Middle East. “No one spoke Arabic which led to some serious misunderstandings between our military and that of the country our servicemen were stationed in,” says Dr. Lewis Lipps, chief engineer on the NSL project. “The NSL Arabic version will immediately resolve that issue and allow certain soldiers to communicate in countries such as Iraq, Afghanistan, even Libya with little to no problem,” said Lipps.

Asked how the nano-chip brain implant works, Lipps explained, “The NSL Arabic version, for instance, has a complete Arabic alphabet and dictionary with over 20,000 common words which are electronically translatable from English literally within nanoseconds. In a simple outpatient procedure, the NSL chip is implanted into the corpus callosum portion of the left side, or the language center, of the brain and activated.”

bluered.gif (1041 bytes)

Dr. Lipps then showed illustrations of the procedure which is done through arthroscopic surgery. “As soon as a soldier thinks out the phrase he wants to say,” he continued, “he pushes a button that is also implanted discretely underneath the skin on the soldier’s upper left side of the head.” Dr. Lipps explained that when the soldier goes to speak, it appears he is tapping his head as if he is thinking of what to say, and voila, his words come out of his mouth in the language he has implanted. In this case, Arabic.

Initial test results indicate a 97.6% success rate on the battlefield and the nano-chip is already being used by many servicemen and women today. Now that the product has been tested and proven to be efficient in Arabic, a Mandarin Chinese model is being tested on businessmen from various industries who find it necessary to communicate in Chinese with their business counterparts in China. The NSL Chinese version should be available to the business world within two to 8-10 months.

bluered.gif (1041 bytes)

Posted by 

Tags: ,,,,

The Society of Neural Prosthetics “IMPLANT” and Whole Brain Emulation Science !

The Society of Neural Prosthetics and Whole Brain Emulation Science

What is mind uploading?

Mind uploading is a popular term for a process by which the mind, a collection of memories, personality, and attributes of a specific individual, is transferred from its original biological brain to an artificial computational substrate. Alternative terms for mind uploading have appeared in fiction and non-fiction, such as mind transfer, mind downloading, off-loading, side-loading, and several others. They all refer to the same general concept of “transferring” the mind to a different substrate.

Once it is possible to move a mind from one substrate to another, it is then called a substrate-independent mind (SIM). The concept of SIM is inspired by the idea of designing software that can run on multiple computers with different hardware without needing to be rewritten. For example, Java’s design principle “write once, run everywhere” makes it a platform independent system. In this context, substrate is a term referring to a generalized concept of any computational platform that is capable of universal computation.

We take the materialist position that the human mind is solely generated by the brain and is a function of neural states. Additionally, we assume that the neural states are computational processes and devices capable of universal computing are sufficient to generate the same kind of computational processes found in a brain.

ETICA stands for Ethical Issues of Emerging ICT Applications

ETICA stands for Ethical Issues of Emerging ICT Applications

This website contains information about the ETICA project. You are invited to look at the deliverables, publications, consortium member and other useful information.


The ETICA project was a reserach project on “Ethical Issues of Emerging ICT Applications” funded by the European Commission under the 7th Framework Programme (GA 230318). It ran from April 2009 to May 2011. ETICA’s main objective was to identify ethical issues of emerging technologies and their potential application areas in order to analyse and evaluate ethical issues arising from these. On this basis, ETICA has developed  recommendations on how to engage with the ethics of emerging ICT in a proactive and acceptable manner.


On this website you can find all the results of the project, including


If you are interested in the findings of the project, in technologies, ethical issues, conceptual questions etc, please go to the

ETICA wiki


This is meant as a prototype of the ICT Ethics Observatory, one of the recommendations coming from the project.


Summary / ETICA magazine

This magazine gives a brief summary of the ETICA project, the work undertaken, methodologies used, findings and recommendations. A printed version is available from the project coordinator. Please feel free to download the pdf version here.

ETICA / STOA policy recommendations

These policy recommendations were developed in collaboration with the STOA panel and are based on the project findings and arose from the final event.

Commission Publication in Ethics of ICT and Security

This publication contains a chapter based on the ETICA project.