2050 – and immortality is within our grasp

2050 – and immortality is within our grasp

 

 David Smith, technology correspondent

Britain’s leading thinker on the future offers an extraordinary vision of life in the next 45 years

Cross section of the human brain

Supercomputers could render the wetware of the human brain redundant. Photograph: Gregor Schuster/Getty Images

Aeroplanes will be too afraid to crash, yoghurts will wish you good morning before being eaten and human consciousness will be stored on supercomputers, promising immortality for all – though it will help to be rich.

These fantastic claims are not made by a science fiction writer or a crystal ball-gazing lunatic. They are the deadly earnest predictions of Ian Pearson, head of the futurology unit at BT.

‘If you draw the timelines, realistically by 2050 we would expect to be able to download your mind into a machine, so when you die it’s not a major career problem,’ Pearson told The Observer. ‘If you’re rich enough then by 2050 it’s feasible. If you’re poor you’ll probably have to wait until 2075 or 2080 when it’s routine. We are very serious about it. That’s how fast this technology is moving: 45 years is a hell of a long time in IT.’

Pearson, 44, has formed his mind-boggling vision of the future after graduating in applied mathematics and theoretical physics, spending four years working in missile design and the past 20 years working in optical networks, broadband network evolution and cybernetics in BT’s laboratories. He admits his prophecies are both ‘very exciting’ and ‘very scary’.

He believes that today’s youngsters may never have to die, and points to the rapid advances in computing power demonstrated last week, when Sony released the first details of its PlayStation 3. It is 35 times more powerful than previous games consoles. ‘The new PlayStation is 1 per cent as powerful as a human brain,’ he said. ‘It is into supercomputer status compared to 10 years ago. PlayStation 5 will probably be as powerful as the human brain.’

The world’s fastest computer, IBM’s BlueGene, can perform 70.72 trillion calculations per second (teraflops) and is accelerating all the time. But anyone who believes in the uniqueness of consciousness or the soul will find Pearson’s next suggestion hard to swallow. ‘We’re already looking at how you might structure a computer that could possibly become conscious. There are quite a lot of us now who believe it’s entirely feasible.

‘We don’t know how to do it yet but we’ve begun looking in the same directions, for example at the techniques we think that consciousness is based on: information comes in from the outside world but also from other parts of your brain and each part processes it on an internal sensing basis. Consciousness is just another sense, effectively, and that’s what we’re trying to design in a computer. Not everyone agrees, but it’s my conclusion that it is possible to make a conscious computer with superhuman levels of intelligence before 2020.’

He continued: ‘It would definitely have emotions – that’s one of the primary reasons for doing it. If I’m on an aeroplane I want the computer to be more terrified of crashing than I am so it does everything to stay in the air until it’s supposed to be on the ground.

‘You can also start automating an awful lots of jobs. Instead of phoning up a call centre and getting a machine that says, “Type 1 for this and 2 for that and 3 for the other,” if you had machine personalities you could have any number of call staff, so you can be dealt with without ever waiting in a queue at a call centre again.’

Pearson, from Whitehaven in Cumbria, collaborates on technology with some developers and keeps a watching brief on advances around the world. He concedes the need to debate the implications of progress. ‘You need a completely global debate. Whether we should be building machines as smart as people is a really big one. Whether we should be allowed to modify bacteria to assemble electronic circuitry and make themselves smart is already being researched.

‘We can already use DNA, for example, to make electronic circuits so it’s possible to think of a smart yoghurt some time after 2020 or 2025, where the yoghurt has got a whole stack of electronics in every single bacterium. You could have a conversation with your strawberry yogurt before you eat it.’

In the shorter term, Pearson identifies the next phase of progress as ‘ambient intelligence’: chips with everything. He explained: ‘For example, if you have a pollen count sensor in your car you take some antihistamine before you get out. Chips will come small enough that you can start impregnating them into the skin. We’re talking about video tattoos as very, very thin sheets of polymer that you just literally stick on to the skin and they stay there for several days. You could even build in cellphones and connect it to the network, use it as a video phone and download videos or receive emails.’

Philips, the electronics giant, is developing the world’s first rollable display which is just a millimetre thick and has a 12.5cm screen which can be wrapped around the arm. It expects to start production within two years.

The next age, he predicts, will be that of ‘simplicity’ in around 2013-2015. ‘This is where the IT has actually become mature enough that people will be able to drive it without having to go on a training course.

‘Forget this notion that you have to have one single chip in the computer which does everything. Why not just get a stack of little self-organising chips in a box and they’ll hook up and do it themselves. It won’t be able to get any viruses because most of the operating system will be stored in hardware which the hackers can’t write to. If your machine starts going wrong, you just push a button and it’s reset to the factory setting.’

Pearson’s third age is ‘virtual worlds’ in around 2020. ‘We will spend a lot of time in virtual space, using high quality, 3D, immersive, computer generated environments to socialise and do business in. When technology gives you a life-size 3D image and the links to your nervous system allow you to shake hands, it’s like being in the other person’s office. It’s impossible to believe that won’t be the normal way of communicating.

The missing link between us and the future !

The missing link between us and the future

In the early 1990s, the IT industry got very excited about virtual reality, the idea that you could use some sort of headset display to wander around in a 3d computer-generated world. We quickly realised there are zillions of variations on this idea, and after the one that became current computer gaming (3d worlds on a 2d monitor) the biggest of the rest was augmented reality, where data and images could be superimposed on the field of view.

Now, we are seeing apps on phones and pads that claim to be augmented reality, showing where the nearest tube station is for example. To a point I guess they are, but only in as far as they can let you hold up a display in front of you and see images relevant to the location and direction. They hardly amount to a head up display, and fall a long way short of the kind of superimposition we’re been used to on sci-fi since Robocop or Terminator. It is clear that we really need a proper head-up display, one that doesn’t require you to take a gadget out and hold it up in front of you.

There are some head-up displays out there. Some make overlay displays in a small area of your field of view, often using small projectors and mirrors. Some use visors.  However the video visor based displays are opaque. They are fine for watching TV or playing games while seated, but not much use for wandering around.

This will change in the next 18 months – 2 years. Semi-transparent visors will begin to appear then. The few years after that will undoubtedly see rapid development of them, eventually bringing a full hi-res 3d overlay capability. And that will surely be a major disruptive technology. Just as we are getting used to various smart phones, pads, ebbook readers and 3d TVs, they could all be absorbed into a general purpose head up display that can be used for pretty much anything.

It is hard to overstate the potential of this kind of interface once it reaches good enough quality. It allows anything from TV, games, or the web, to be blended with any real world scene or activity. This will transform how we shop, work and socialise, how we design and use buildings, and even how we use art or display ourselves. Each of these examples could easily fill a book.  The whole of the world wide web was enabled by the convergence of just the computing and telecoms industries. The high quality video visor will enable convergence of the real world with the whole of the web, media, and virtual worlds, not just two industry sectors. Augmented reality will be a huge part of that, but even virtual reality and the zillions of variants can then start to be explored too.

In short, the semi-transparent video visor is the missing link. It is the biggest bottleneck now stopping the future arriving. Everything till we get that is a sideshow.