Artificial Hippocampus, the Borg Hive Mind, and Other Neurological Endeavors

Artificial Hippocampus, the Borg Hive Mind, and Other Neurological Endeavors

November 15

Many of us know about ‘Borg Hive Mind’ from TV programs where the characters are linked through brain-to-brain or computer-to-brain interactions. However, this is more than a science fiction fantasy. The idea was contemplated seriously in the 2002 National Science Foundation report, Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science. ‘Techlepathy‘ is the word coined, referring to the communication of information directly from one mind to another (i.e. telepathy) with the assistance of technology.

Many research activities focus on neuro-engineering and the cognitive sciences. Many neuroscientists and bioengineers now work on:

  • cognitive computing
  • digitally mapping the human brain (see here and here); the mouse brain map has just been published
  • developing microcircuits that can repair brain damage, and
  • other numerous projects related to changing the cognitive abilities and functioning of humans, and artificial intelligence.

Journals exist for all of these activities — including the Human Brain Mappingjournal. Some envision a Human Cognome Project. James Albus, a senior fellow and founder of the Intelligent Systems Division of the National Institute of Standards and Technology believes the era of ‘engineering the mind‘ is here. He has proposed a national program for developing a scientific theory of the mind.

Neuromorphic engineering, Wikipedia says, “is a new interdisciplinary discipline that takes inspiration from biology, physics, mathematics, computer science and engineering to design artificial neural systems, such as vision systems, head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are based on those of biological nervous systems.”

mind computer

There are many examples.

Researchers from Harvard University have linked nanowire field-effect transistors to neurons. Three applications are envisioned: hybrid biological/electronic devices, interfaces to neural prosthetics, and the capture of high-resolution information about electrical signals in the brain. Research is advancing in four areas: neuronal networks, interfaces between the brain and external neural prosthetics, real-time cellular assays, and hybrid circuits that couple digital nanoelectronic and biological computing components.

Numenta, a company formed in 2005, states on its webpage that it “is developing a new type of computer memory system modelled after the human neocortex.”

Kwabena Boahen, an associate professor of bioengineering at Stanford University, has developed Neurogrid, “a specialized hardware platform that will enable the cortex’s inner workings to be simulated in detail — something outside the reach of even the fastest supercomputers.” He is also working on a silicon retina and a silicon chip that emulates the way the juvenile brain wires itself up.

Researchers at the University of Washington are working on an implantable electronic chip that may help to establish new nerve connections in the part of the brain that controls movement.

The Blue Brain project — a collaboration of IBM and the Ecole Polytechnique Federale de Lausanne, in Lausanne, Switzerland – will create a detailed model of the circuitry in the neocortex.

A DNA switchnanoactuator‘ has been developed by Dr. Keith Firman at the University of Portsmouth and other European researchers, which can interface living organisms with computers.

Kevin Warwick had an RFID transmitter (a future column will deal with RFID chips) implanted beneath his skin in 1998, which allowed him to control doors, lights, heaters, and other computer-controlled devices in his proximity. In anotherexperiment, he and his wife Irena each had electrodes surgically implanted in their arms. The electrodes were linked by radio signals to a computer which created a direct link between their nervous systems. Kevin’s wife felt when he moved his arm.

mind

In his book I, Cyborg, Kevin Warwick imagines that 50 years from now most human brains will be linked electronically through a global computer network.

St. Joseph’s Hospital in the United States has implanted neurostimulators (deep brain stimulators) using nanowires to connect a stimulating device to brain. A pacemaker-like device is implanted in the chest, and flexible wires are implanted in the brain. Electrical impulses sent from the ‘pacemaker’ to the brain are used to treat Parkinson’s, migraine headaches and chronic pain, depression, obsessive-compulsive disorder, improve the mobility of stroke victims, and curb cravings in drug addicts.

In 2003/2004 a variety of publications (see links below) reported on the efforts of professor Theodore W. Berger, director of the Center for Neural Engineering at the University of Southern California, and his colleagues, to develop the world’s firstbrain prosthesis – an ‘artificial hippocampus’ which is supposed to act as a memory bank. These publications highlighted in particular the use of such implants for Alzheimer’s patients.

The research program is proceeding in four stages: (1) tests on slices of rat brains kept alive in cerebrospinal fluid… reported as successful in 2004; (2) tests on live rats which are to take place within three years; (3) tests on live monkeys; and (4) tests on humans — very likely on Alzheimer’s patients first.

The Choice is Yours

If these advancements come to pass, they will create many ethical, legal, privacy and social issues. For the artificial hippocampus we should ask: would brain implants force some people to remember things they would rather forget? Could someone manipulate our memory? What would be the consequence of uploading information (see my education column)? Will we still have control over what we remember? Could we be forced to remember something over and over? If we can communicate with each other through a computer what will be the consequence of a Global Brain?

It is important that people become more involved in the governance of neuro-engineering and cognitive science projects. We should not neglect these areas because we perceive them to be science fiction. We also need to look beyond the outlined ‘medical applications.’ If the artificial hippocampus works, it will likely be used for more than dealing with diseases.

I will cover brain-machine interfaces, neuro-pharmaceutical-based ‘cognitive enhancement,’ and neuroethics and the ethics of artificial intelligence in future columns.

Gregor Wolbring is a biochemist, bioethicist, science and technology ethicist, disability/vari-ability studies scholar, and health policy and science and technology studies researcher at the University of Calgary. He is a member of the Center for Nanotechnology and Society at Arizona State University; Member CAC/ISO – Canadian Advisory Committees for the International Organization for Standardization section TC229 Nanotechnologies; Member of the editorial team for the Nanotechnology for Development portal of the Development Gateway Foundation; Chair of the Bioethics Taskforce of Disabled People’s International; and Member of the Executive of the Canadian Commission for UNESCO. He publishes the Bioethics, Culture and Disability website, moderates a weblog forthe International Network for Social Research on Diasbility, and authors a weblogon NBICS and its social implications.

Resources
 

Grid-Based Computing to Fight Neurological Disease

ScienceDaily: Your source for the latest research news<br />
and science breakthroughs -- updated daily

Grid-Based Computing to Fight Neurological Disease

ScienceDaily (Apr. 11, 2012) — Grid computing, long used by physicists and astronomers to crunch masses of data quickly and efficiently, is making the leap into the world of biomedicine. Supported by EU-funding, researchers have networked hundreds of computers to help find treatments for neurological diseases such as Alzheimer’s. They are calling their system the ‘Google for brain imaging.’



Through the Neugrid project, the pan-European grid computing infrastructure has opened up new channels of research into degenerative neurological disorders and other illnesses, while also holding the promise of quicker and more accurate clinical diagnoses of individual patients.

The infrastructure, set up with the support of EUR 2.8 million in funding from the European Commission, was developed over three years by researchers in seven countries. Their aim, primarily, was to give neuroscientists the ability to quickly and efficiently analyse ‘Magnetic resonance imaging’ (MRI) scans of the brains of patients suffering from Alzheimer’s disease. But their work has also helped open the door to the use of grid computing for research into other neurological disorders, and many other areas of medicine.

‘Neugrid was launched to address a very real need. Neurology departments in most hospitals do not have quick and easy access to sophisticated MRI analysis resources. They would have to send researchers to other labs every time they needed to process a scan. So we thought, why not bring the resources to the researchers rather than sending the researchers to the resources,’ explains Giovanni Frisoni, a neurologist and the deputy scientific director of IRCCS Fatebenefratelli, the Italian National Centre for Alzheimer’s and Mental Diseases, in Brescia.

Five years’ work in two weeks The Neugrid team, led by David Manset from MaatG in France and Richard McClatchey from the University of the West of England in Bristol, laid the foundations for the grid infrastructure, starting with five distributed nodes of 100 cores (CPUs) each, interconnected with grid middleware and accessible via the internet with an easy-to-use web browser interface. To test the infrastructure, the team used datasets of images from the Alzheimer’s Disease Neuroimaging Initiative in the United States, the largest public database of MRI scans of patients with Alzheimer’s disease and a lesser condition termed ‘Mild cognitive impairment’.

‘In Neugrid we have been able to complete the largest computational challenge ever attempted in neuroscience: we extracted 6,500 MRI scans of patients with different degrees of cognitive impairment and analysed them in two weeks,’ Dr. Frisoni, the lead researcher on the project, says, ‘on an ordinary computer it would have taken five years!’.

Though Alzheimer’s disease affects about half of all people aged 85 and older, its causes and progression remain poorly understood. Worldwide more than 35 million people suffer from Alzheimer’s, a figure that is projected to rise to over 115 million by 2050 as the world’s population ages.

Patients with early symptoms have difficulty recalling the names of people and places, remembering recent events and solving simple maths problems. As the brain degenerates, patients in advanced stages of the disease lose mental and physical functions and require round-the-clock care.

The analysis of MRI scans conducted as part of the Neugrid project should help researchers gain important insights into some of the big questions surrounding the disease such as which areas of the brain deteriorate first, what changes occur in the brain that can be identified as biomarkers for the disease and what sort of drugs might work to slow or prevent progression.

Neugrid built on research conducted by two prior EU-funded projects: Mammogrid, which set up a grid infrastructure to analyse mammography data, and AddNeuroMed, which sought biomarkers for Alzheimer’s. The team are now continuing their work in a series of follow-up projects. An expanded grid and a new paradigm Neugrid for You (N4U), a direct continuation of Neugrid, will build upon the grid infrastructure, integrating it with ‘High performance computing’ (HPC) and cloud computing resources. Using EUR 3.5 million in European Commission funding, it will also expand the user services, algorithm pipelines and datasets to establish a virtual laboratory for neuroscientists.

‘In Neugrid we built the grid infrastructure, addressing technical challenges such as the interoperability of core computing resources and ensuring the scalability of the architecture. In N4U we will focus on the user-facing side of the infrastructure, particularly the services and tools available to researchers,’ Dr. Frisoni says. ‘We want to try to make using the infrastructure for research as simple and easy as possible,’ he continues, ‘the learning curve should not be much more difficult than learning to use an iPhone!’

N4U will also expand the grid infrastructure from the initial five computing clusters through connections with CPU nodes at new sites, including 2,500 CPUs recently added in Paris in collaboration with the French Alternative Energies and Atomic Energy Commission (CEA), and in partnership with ‘Enabling grids for e-science Biomed VO’, a biomedical virtual organisation.

Another follow-up initiative, outGRID, will federate the Neugrid infrastructure, linking it with similar grid computing resources set up in the United States by the Laboratory of Neuro Imaging at the University of California, Los Angeles, and the CBRAIN brain imaging research platform developed by McGill University in Montreal, Canada. A workshop was recently held at the International Telecommunication Union, an agency of the United Nations, to foster this effort.

Dr. Frisoni is also the scientific coordinator of the DECIDE project, which will work on developing clinical diagnostic tools for doctors built upon the Neugrid grid infrastructure. ‘There are a couple of important differences between using brain imaging datasets for research and for diagnosis,’ he explains. ‘Researchers compare many images to many others, whereas doctors are interested in comparing images from a single patient against a wider set of data to help diagnose a disease. On top of that, datasets used by researchers are anonymous, whereas images from a single patient are not and protecting patient data becomes an issue.’

The DECIDE project will address these questions in order to use the grid infrastructure to help doctors treat patients. Though the main focus of all these new projects is on using grid computing for neuroscience, Dr. Frisoni emphasises that the same infrastructure, architecture and technology could be used to enable new research — and new, more efficient diagnostic tools — in other fields of medicine. ‘We are helping to lay the foundations for a new paradigm in grid-enabled medical research,’ he says.

Neugrid received research funding under the European Union’s Seventh Framework Programme (FP7).